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Abstract
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“As some of us keep trying to point out, the United States is in a liquidity
trap: [...] This puts us in a world of topsy-turvy, in which many of the usual rules
of economics cease to hold. Thrift leads to lower investment; wage cuts reduce
employment; even higher productivity can be a bad thing. And the broken windows
fallacy ceases to be a fallacy: something that forces firms to replace capital, even
if that something seemingly makes them poorer, can stimulate spending and raise
employment.” Paul Krugman, 3rd September 2011.

1. Introduction

The standard new Keynesian model predicts that economies behave differently at the

zero lower bound: completely wasteful government spending or forward-guidance are very

stimulative, capital destruction or oil supply shocks are expansionary, and reducing pricing

frictions exacerbates a recession. I provide empirical evidence against these predictions:

The Great East Japan earthquake and oil supply shocks are contractionary at zero nominal

interest rates.

In simple new Keynesian models (e.g., Woodford, 2003; Werning, 2012) aggregate demand

is determined by intertemporal substitution, and not a static old Keynesian consumption or

investment function. Lower expected real interest rates encourage consumers to pull forward

consumption and vice-versa. Capital destruction, higher real oil prices, or higher government

spending raise marginal costs, which raises expected inflation. In normal times the central

bank raises nominal interest rates more than one-for-one with inflation, raising expected

real interest rates, and inducing consumers to postpone consumption. But if the central

bank does not respond, for example because it is constrained by the zero lower bound, then

expected real interest rates decline causing an increase in consumption and output. Thus,

I look for events that raise current and future marginal costs, I check whether expected

inflation rises as predicted and nominal interest rates do not, and I look for the predicted

output rise.

The first event is the Great East Japan Earthquake in 2011. I verify that expected

inflation rises and nominal interest rates do not, so that expected real interest rates decline.
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However, in contrast to the new Keynesian prediction, Japan experienced a large drop in

output following the earthquake and tsunami.

Second, I identify oil supply shocks following Kilian (2009) and estimate their impact on

Japan at the zero lower bound. Again, expected inflation rises and nominal interest rates

do not, but output falls. I also provide evidence against a weaker interpretation of the new

Keynesian model: Because nominal rates do not rise at the zero lower bound, supply shocks

should be less contractionary than in normal times. However, I also reject this weaker

prediction since oil supply shocks are, if anything, more contractionary at the zero lower

bound.

I highlight modifications of the new Keynesian model that are consistent with the data

(Boneva, Braun, and Waki, 2016; Cochrane, forthcoming; Kiley, 2016; Mertens and Ravn,

2014). These also overturn the other unusual predictions for the zero lower bound, such as

large fiscal multipliers. This suggests that the zero lower bound may not be so “topsy-turvy”

after all, and many of the usual rules of economics continue to hold.

Many previous papers have emphasized the unusual new Keynesian policy predictions

for the zero lower bound. Eggertsson, Ferrero, and Raffo (2014), figures 4 and 8, stress

that raising productivity can be contractionary in a new Keynesian model at the zero lower

bound. Roulleau-Pasdeloup and Zhutova (2015, p. 14-15) find that Hoover’s efforts to

maintain high wages is expansionary in their new Keynesian model of the Great Depression.

Similarly, Eggertsson (2012), proposition 2, argues that the National Industrial Recovery Act

raised output in the Great Depression by allowing firms and workers to collude and raise

mark-ups. Christiano, Eichenbaum, and Rebelo (2011, figure 2), Woodford (2011, equation

38), and Carlstrom, Fuerst, and Paustian (2014, figure 1), among many others, emphasize

the large fiscal multipliers generated by standard new Keynesian models at the zero lower

bound. According to Eggertsson (2011), section 7 table 3, cutting marginal tax rates on

labor income would reduce output. And Eggertsson (2010c, proposition 2) and Eggertsson

and Krugman (2012, p. 1486-1487) argue that a greater willingness to supply labor would
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reduce output. My results suggest skepticism that these predictions are correct.

Previous empirical examinations of supply shocks at the zero lower bound include Mulli-

gan (2010, 2012), who argues that seasonal labor inflows do not appear to be contractionary

and higher minimum wages do not appear to be expansionary in the data. However, Eg-

gertsson (2010a) disputes that these are valid tests of the standard new Keynesian model,

because the shocks are either forecastable or permanent and therefore do not raise inflation

expectations and lower expected real interest rates. Bachmann, Berg, and Sims (2015) show

that consumers expecting above-average inflation have lower willingness to spend at the zero

lower bound. However, in their cross-sectional analysis they cannot test whether raising

aggregate inflation expectations is expansionary at the zero lower bound as predicted by the

standard new Keynesian model. My analysis is robust to these critiques, as the Great East

Japan Earthquake and oil supply shocks raise aggregate inflation expectations and lower ex-

pected real interest rates, yet still are contractionary. In line with my results, Cohen-Setton,

Hausman, and Wieland (2017) find that mandatory wage increases and hours reductions

were also contractionary in Great Depression France.

2. Model

I use a simple new Keynesian model to convey the intuition for its unusual policy pre-

dictions at the zero lower bound, and I show that one obtains the same predictions from the

medium-scale Smets and Wouters (2007) model.

I follow Werning’s (2012) continuous-time set-up,1

dc(t)
dt

= i(t)− π(t)− ρ (1)

dπ(t)
dt

= ρπ(t)− κ∗[c(t)− a(t)] (2)

where c(t) is the log-linear deviation of consumption from steady state, i(t) is the nominal

1His equations 1a-b, where x(t) = c(t) and a(t) = 0 in his set-up. Equations (1)-(2) correspond to the
discrete-time equations 1.12-1.13 in Woodford (2003), Ch. 4.
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interest rate, π(t) is the inflation rate, and a(t) is the log-linear deviation of productivity

from trend. All output is consumed, so c(t) is also equal to output y(t). The parameter

ρ > 0 is the discount rate, and κ∗ > 0 is a nonlinear function of deep parameters. (See

online appendix D for a derivation of equation (2).)

Equation (1) is the Euler equation, in which consumption growth (equal to output

growth) is proportional to the real interest rate i(t)− π(t) net of the discount rate ρ. Given

a return to steady state, limt→∞c(t) = 0, consumption and output are determined by the

expected path of real interest rates,

y(t) = c(t) = −
∫ ∞
s=t

[i(s)− π(s)− ρ]ds. (3)

Aggregate demand and output is determined by intertemporal substitution. High expected

real interest rates induce a postponement of consumption, causing a fall in output, whereas

low expected real interest rates raise consumption and output today.

Equation (2) is the new Keynesian Phillips curve, in which current inflation is equal to

the sum of discounted expected real marginal costs of production,

π(t) = κ∗
∫ ∞
s=t

e−ρ(s−t) [c(s)− a(s)] ds. (4)

Holding consumption fixed, a decline in productivity a(t) raises the marginal cost of pro-

duction and thus raises inflation. But lower a(t) can equivalently represent any shock that

raises the marginal cost of production, such as an increase in the disutility of labor or an

increase government spending. Thus, a decline in a(t) can be more broadly interpreted as a

negative supply shock.

For simplicity, I solve the perfect foresight version of the model, with an unexpected

negative productivity shock at time zero that lasts for T periods,

a(t) = ā < 0 0 ≤ t < T,

a(t) = 0 t ≥ T.
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I determine the impact of this shock under two different monetary policy regimes. In

“normal times” the central bank follows an “active” interest rate rule, i(t) = ρ+φπ(t) where

φ > 1. Thus, the nominal interest rate rises more than one-for-one with inflation. In the

second regime the nominal interest rate is pegged at i(t) = ρ. Monetary policy is “passive”

and does not respond to shocks. A likely cause of unresponsive monetary policy is the zero

lower bound, but whether the nominal interest is pegged at zero or at a positive constant is

unimportant to the economics of the new Keynesian model (see e.g., Christiano et al., 2011,

p.100-101 on this point). Directly assuming a pegged interest rate simplifies the algebra of

the model relative to a more complex set-up in which a disturbance causes the zero lower

bound to bind for the duration of the productivity shock. Online appendix E shows that

the simple version of the model presented here and the more complex set-up yield identical

predictions for the response to a productivity shock.

I follow the standard equilibrium selection principles in the new Keynesian literature.

I restrict my attention to equilibria that are bounded going forward in time (see Wood-

ford, 2003, p.77-79). Also, following Eggertsson (2010c), Christiano et al. (2011), Woodford

(2011), and Werning (2012) among others, I assume that the central bank can commit to a

zero inflation target after the shock passes, π(T ) = 0.2 These two restrictions pin down a lo-

cally unique forward-bounded equilibrium around the zero-inflation steady state. Cochrane

(forthcoming) shows that the unusual policy predictions for the zero lower bound are a con-

sequence of the π(T ) = 0 restriction, and he argues against this equilibrium selection. I

instead take the standard new Keynesian model including its equilibrium selection as given,

and then examine whether the unusual policy predictions emphasized in the literature are

consistent with the data.

The upper panel of figure 1 plots the output and inflation responses in normal times to

2This boundary condition is typically implemented using an interest rate rule that has a zero inflation
target and satisfies the Taylor principle. An example is i(t) = max{ρ+ φπ(t), 0} where φ > 1. Then, given
that all shocks have disappeared at T , π(T ) = 0 on the locally unique equilibrium path that is bounded
forward in time. See Proposition 1 in Eggertsson (2010c), Christiano et al. (2011) p.90-91, and Woodford
(2011) p.17. Like Werning (2012), I directly impose π(T ) = 0.
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a negative productivity shock. The parameter values are ρ = 0.02, κ∗ = 0.35, φ = 2, T = 4,

and ā = −0.01. The decline in productivity raises the marginal cost of production, which

raises inflation. In normal times, the central bank raises nominal interest rates more than

one-for-one with inflation, so expected real interest rates rise. This encourages consumers to

postpone their consumption today and demand falls. Thus, output jumps down on the news

of low productivity and then gradually converges to steady state. For general parameter

choices the same intuition applies, and output will always decline along with productivity,

y(t) = c(t) = 1
µ1 − µ2

[
µ1(1− e−µ2(T−t))− µ2(1− e−µ1(T−t))

]
ā < 0

π(t) = κ∗

µ1 − µ2
(e−µ1(T−t) − e−µ2(T−t))ā,

for 0 ≤ t < T , where µ1, µ2 are the eigenvalues

µ1 = ρ

2 +

√
ρ2 − 4κ∗(φ− 1)

2 , µ2 = ρ

2 −

√
ρ2 − 4κ∗(φ− 1)

2 .

The algebra steps for this and the following derivation are in appendix A.

For the same parameter values, the lower panel of figure 1 displays the output and

inflation response under an interest rate peg, or, equivalently, at the zero lower bound.

The negative productivity shock still raises current and future inflation, but now nominal

interest rates are unchanged. Therefore, expected real interest rates fall, inducing consumers

to consume now rather than later. Thus, output jumps up on news of lower productivity

and then gradually declines. In line with this intuition, output and inflation rise for any

parameter values,

y(t) = c(t) = 1
λ1 − λ2

[
λ1(1− e−λ2(T−t))− λ2(1− e−λ1(T−t))

]
ā > 0

π(t) = κ∗

λ1 − λ2
(e−λ1(T−t) − e−λ2(T−t))ā > 0,

for 0 ≤ t < T where λ1, λ2 are the eigenvalues

λ1 = ρ

2 +
√
ρ2 + 4κ∗

2 > 0, λ2 = ρ

2 −
√
ρ2 + 4κ∗

2 < 0.
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I now add government spending, g(t), to the model,

dc(t)
dt

= i(t)− π(t)− ρ

dπ(t)
dt

= ρπ(t)− κ∗[c(t)− ψaa(t) + ψgg(t)],

where ψa, ψg > 0. By symmetry, a positive government spending shock, g(t) > 0, has the

same effect as a negative productivity shock a(t) = −ψg
ψa
g(t) < 0. Thus, government spending

only crowds in consumption (generating a multiplier above 1) if lower productivity is also

expansionary. In the standard new Keynesian model testing for expansionary negative supply

shocks is the same as testing for a large fiscal multiplier.

Medium-scale new Keynesian models make similar predictions, because intertemporal

substitution remains the central propagation mechanism (Kaplan, Moll, and Violante, 2017).

I use the ubiquitous Smets and Wouters (2007) model for illustration. As before, I study an

unexpected, negative productivity shock at t = 0. I construct impulse response functions as

detailed in appendix B.

The top panel of figure 2 plots the result for normal times. As in the simple model, the

negative productivity shock causes higher inflation, inducing the central bank to raise real

interest rates. Agents postpone consumption and investment, and output falls.

For the passive monetary policy regime, I choose an interest rate peg that lasts for

T = 100 quarters. This implies that almost all of the productivity shock occurs at constant

nominal interest rates, similar to the simple model. T = 100 is also consistent with the

persistence of the zero lower bound in Japan. The bottom panel of figure 2 plots the

result. Now the increase in inflation lowers expected real interest rates. Agents pull forward

consumption and investment, and output expands significantly.

I now turn to testing the prediction that negative supply shocks are expansionary under

passive monetary policy. I look for negative supply shocks at the zero lower bound, and I

verify that nominal interest rates do not rise (so monetary policy is passive). I then check if

expected inflation and output increase as predicted by the standard new Keynesian model.
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Figure 1 – Impulse response function for a negative productivity shock in the standard new Key-
nesian model. The parameter values are ρ = 0.02, κ∗ = 0.35, φ = 2, T = 4, and ā = −0.01. The
top panel shows the impact in normal times, where the central bank follows an “active” monetary
policy rule, i(t) = ρ+φπ(t) with φ > 1. The bottom panel shows the impact under an interest rate
peg, or equivalently, the zero lower bound, so the nominal interest rate is constant. Both panels
impose the standard new Keynesian equilibrium selection criteria.
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Figure 2 – Impulse response function for a -1% negative productivity shock in the Smets and
Wouters (2007) model. The top panel shows the impact in normal times, where the central bank
follows the estimated interest rate rule in Smets and Wouters (2007). The bottom panel shows the
impact for an interest rate peg, or, equivalently, the zero lower bound, where the nominal interest
rate is constant for T = 100 quarters.
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3. The Great East Japan Earthquake

On Friday March 11th 2011, a magnitude-9.0 earthquake off the east coast of Japan trig-

gered a tsunami that caused extensive damage to structures, created an electricity shortage,

and disrupted global supply chains. To connect this shock to the analysis above, I add an ex-

ogenous capital stock K(t) to the standard new Keynesian model. The production function

is now Y (t) = A(t)K(t)αL(t)1−α, where L(t) is labor input. By symmetry, an earthquake

destroying capital K(t) is just like a decline in productivity A(t). It raises the marginal

cost of production and raises inflation. If the central bank does not react because it is con-

strained by the zero lower bound, then real interest rates fall, which stimulates consumption

and output through intertemporal substitution.

While instructive, this setting does not incorporate any endogenous investment response.

I therefore also simulate a capital destruction shock in the Smets and Wouters (2007) model.

I construct impulse response functions as detailed in appendix B, and I plot them in figure 3.

In normal times destroying 1% of the capital shock generates a tiny expansion followed by

a persistent contraction. But if nominal interest rates are constant, then output expands,

by almost 2%, and the destroyed capital is quickly replenished. The Great East Japan

Earthquake provides a testing ground for this prediction since Japan has had essentially

constant zero nominal interest rates since 2009.

The available evidence suggests that the earthquake was contractionary. Industrial pro-

duction declined by 6.4% from February to March 2011. Between the fourth quarter of 2010

and the first quarter of 2011, real output declined by 2.0% and real consumption contracted

by 1.8%. Japan only recovered to its pre-earthquake GDP peak by the first quarter of 2012.

I can also proxy for pre-existing trends using professional forecasts. Before the earth-

quake, in February 2011, Consensus Economics predicted GDP to grow by 1.5% from 2010-

2011 (figure 4(a)). The actual GDP growth rate was -0.4%. In the aftermath of the earth-

quake, in April 2011, the Consensus Economics forecast for 2011 GDP growth were revised
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Figure 3 – Impulse response function for a -1% capital destruction shock in the Smets and Wouters
model. The top panel shows the impact in normal times, where the central bank follows the
estimated interest rate rule in Smets and Wouters (2007). The bottom panel shows the impact for
a the zero lower bound regime, where the nominal interest rate is constant for T = 100 quarters.
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down by 1.2 percentage points. Overall, the sharpness of the contraction and the forecast

revisions suggest a causal effect of the earthquake.

The contraction was accompanied by an increase in inflation expectations. Japanese con-

sensus inflation forecasts for 2011 and 2012 rose following the earthquake by 0.3 percentage

points and 0.2 percentage points respectively (figure 4(b)).3 In addition, the 10-year inflation

swap rate rose from an average of -3 basis points from March 7th through 10th to an average

of +3 basis points from March 14th through 18th.4

It is clear that Japan was at the zero lower bound at the time; the Bank of Japan discount

rate was at 0.3% and the uncollateralized overnight call rate was below 0.1%. Of course, the

output expansion in the standard new Keynesian model and the Smets and Wouters model

is predicated on the assumption that expected nominal interest rates also do not rise. The

are consistent with this assumption. The yield on Japanese 10-year government bonds fell

from an average of 1.30% from March 7th through 10th to 1.22% from March 14th through

18th.5 Twenty-year and 30-year bond yields also declined.

In short, the Great East Japan Earthquake and tsunami was a negative supply shock at

the zero lower bound. Inflation expectations rose and nominal interest rates did not rise, but

the Japanese economy contracted contrary to the prediction of the standard new Keynesian

model.

A potential concern is that the Great East Japan Earthquake may not be a temporary

shock, as assumed in the simple new Keynesian model or the Smets and Wouters model,

where any destroyed capital gets rebuilt. However, Brueckner (2014) estimates that the

capital stock returns to steady state 20 years after an earthquake. Further, the April survey’s

GDP growth forecast for 2012 was revised upward, making up half of the loss from the

3I use February and April forecasts, because the March forecasts were released only shortly after the
earthquake so that some of them were outdated (e.g., the Morgan Stanley forecast).

4Data on inflation swaps and bond yields are from Bloomberg.
5One reason for the decline in nominal interest rates was a Bank of Japan announcement to increase

its Asset Purchase Program in response to the earthquake and tsunami. I attribute this response to the
earthquake and tsunami in the sense that the monetary easing would not have occurred otherwise. Of course,
from the perspective of the standard new Keynesian model, it becomes more puzzling that a negative supply
shock and a concurrent monetary expansion do not raise output at the zero lower bound.
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forecast revision for 2011, as shown in figure 4(a). This suggests that the Japanese economy

is catching up to its balanced growth path. The International Monetary Fund also did not

change its estimates for potential output in Japan (Hausman and Wieland, 2014). Finally,

to the extent that a potential phase-out of nuclear power in Japan merely pulls forward an

eventual phase-out and/or substitution with alternative technologies, then that effect should

also be viewed as temporary. In the event, with the first nuclear reactors returning to the

grid in late 2015, the abandonment of nuclear power appears to have been only a temporary

policy change. This suggests that it is reasonable to treat the earthquake and tsunami as a

temporary shock.

4. Oil Supply Shocks

I next study global oil supply shocks. In a simple new Keynesian model with oil, these

shocks affect consumption and inflation through the log-linearized real price of oil po(t),

dc(t)
dt

= i(t)− π(t)− ρ

dπy(t)
dt

= ρπy(t)− κ∗[c(t) + ψpo(t)]

π(t) = πyt + γ
dpo(t)
dt

.

πy is the inflation rate of the non-oil good, ψ > 0 captures the use of oil in that good’s

production, and γ is the steady state share of oil in consumption. A higher real price

of oil raises the marginal cost of production, and it also has a direct effect on consumer

price inflation. But the same intuition from a negative productivity shock also applies to a

temporary rise in the real price of oil, po(t) > 0 for 0 ≤ t < T . If the increase in real oil prices

raises inflation expectations, and the central bank does not react by raising nominal interest

rates, then consumption and gross output will rise through intertemporal substitution. Real

GDP also increases because of higher aggregate demand and because the economy substitutes

from oil inputs towards labor. In online appendix F, I verify that this conclusion also holds
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in a fully spelled-out new Keynesian open economy model with oil imports.

I focus on oil supply shocks as primitive shocks raising real oil prices, because global

demand shocks that raise real oil prices are likely correlated with domestic demand shocks.

I follow Kilian’s (2009) identification strategy for uncovering oil supply shocks. He estimates

a VAR with three monthly variables: the growth in global oil production, ∆prodt, a measure

of global real economic activity, reat, and log real oil prices, rpot.6 I denote the data vector

by xt = (∆prodt, reat, rpot)′. The structural VAR representation in Kilian (2009) is,

A0xt = α +
24∑
j=1

Ajxt−j + εt. (5)

The first element in εt is the shock to global oil production, which I refer to as an oil supply

shock. Like Kilian (2009) I assume that oil production responds to other structural shocks

(e.g., demand shocks) with at least a one-month delay. Anderson, Kellogg, and Salant

(forthcoming) provide evidence for this restriction from micro data. Thus, the first row of

A0 is a unit-vector (1, 0, 0). The estimated oil supply shocks are then the OLS-residuals from

the first equation in (5).7

The sample period is February 1973 through September 2015. I plot the estimated oil

supply shocks in figure 5(a) aggregated to an annual frequency. In figure 5(b) I plot the

impact of an oil supply shock on real oil prices along with 95% error bands. Similar to

Kilian’s original series, a one-standard-deviation negative oil supply shock raises real oil

prices by just over 1% after 6 months. The impulse response function is somewhat noisy,

but the increase in real oil prices is statistically significant on impact. The impulse response

6Data sources are: prodt is crude oil including lease condensate from the U.S. Energy Information Ad-
ministration (link). reat is an index of dry cargo single voyage ocean freight rates, deflated by the U.S. CPI
and detrended, which is available from Lutz Kilian’s website (link). rpot is the U.S. refiner aquisition cost
of an oil barrel from the U.S. Energy Information Administration (link) deflated by the U.S. CPI. I merge
data from January 2008 onwards with Lutz Kilian’s original dataset (link).

7An implicit identification assumption is that news of oil demand shocks arrive within the period. If
oil demand shocks for the next month are known, then producers may adjust production simultaneously
with the change in demand. In that case, the VAR may attribute forecastable demand shocks to oil supply
shocks. In online appendix G, I therefore test if the oil supply shocks are forecastable based on past changes
in oil futures prices and based on past changes of the oil price expectations derived in Baumeister and Kilian
(2017). I do not find evidence of predictability, consistent with the identification assumption.
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function also converges to zero, so the negative supply shock is temporary as I assume in

the theory.

I estimate responses to these oil supply shocks in Japan.8 To separate active and passive

monetary policy regimes, I partition the sample into “normal times” and the zero lower

bound period. The starting date of the normal-times regime is January 1986. Kuttner and

Posen (2004) argue that the Bank of Japan conducted active monetary policy after this date.

Normal times end and the zero lower bound begins in October 1995, the first full month

after the Bank of Japan lowered the call rate to 50 basis points. This dating is in line with

Krugman (1998), Eggertsson and Woodford (2003), Svensson (2006), and Eggertsson (2008).

Kuttner and Posen (2004) identify three deflationary shocks in 1996 and 1997 that did not

cause a further reduction in interest rates, suggesting that monetary policy was passive at

the time. I follow Eggertsson and Pugsley (2006) and Eggertsson (2010b) and let the zero

lower bound spell end in June 2006, the month before the Bank of Japan raised its policy

rate to 25 basis points. Japan’s second zero lower bound spell begins in January 2009, the

first full month after the Bank of Japan reduced its policy rate from 30 to 10 basis points.

These dates amount to using 50 basis points as a cut-off for the zero lower bound before

1998 and 25 basis points thereafter.

For each regime, I estimate the effect of oil supply shocks oilt on outcomes yt using an

autoregressive distributive lag equation,

∆yt = αx +
m∑
j=1

βx,j∆yt−j +
k∑
j=0

γx,joilt−j + ηt, (6)

where x ∈ {zero lower bound, normal times} indexes the regime. I use the Akaike informa-

tion criterion to select lag lengths m and k. The specification implies that the impact of

a past oil supply shock on current outcomes is determined by the current regime, which is

consistent with the standard new Keynesian model.

I construct impulse response functions from the coefficients {βx,j, γx,j}j for each regime

8Fukunaga, Hirakata, and Sudo (2011) and Iwaisako and Nakata (2015) also study the impact of oil
supply shocks on Japan, but do not distinguish between the zero lower bound and normal times.
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x. Thus, the impulse response functions are conditional on the same regime over the horizon

and do not incorporate transitions to the other regime. This is appropriate for testing if

negative supply shocks are expansionary at the zero lower bound. However, my impulse

response functions are not estimates of the expected path of y given a shock, which would

have to incorporate expected transitions between regimes.9

I first examine the response of inflation expectations to oil supply shocks. The inflation

expectations data are from Consensus Economics. They have released inflation forecasts at

quarterly frequency since 1991, typically in March, June, September and December. For

each forecast release date, I sum the current and two lags of oil supply shocks to create

a quarterly oil supply shock. For example, if the forecast is released in March, then the

corresponding quarterly oil supply shock is the sum of the monthly oil supply shock from

January, February and March. I use the four-quarter-ahead-inflation forecast for which next

quarters (expected) price level is the basis. Thus, the forecast from March measures expected

price changes from the second quarter of this year until the second quarter of next year. This

ensures that my results are not driven by a time aggregation bias.

Figure 6(a) plots the dynamic impulse response function of inflation expectations to a

one-standard-deviation negative oil supply shock for both the zero lower bound period and

normal times. The shaded area is the 95% confidence interval for the zero lower bound. I

use Driscoll and Kraay (1998) standard errors, which are robust to heteroscedasticity and

serial correlation, and correct them for the first-stage sampling error following Murphy and

Topel (2002). Figure 6(a) shows that a negative oil supply shock raises inflation expectations

at the zero lower bound, with a statistically-significant peak effect of 13 basis points after

four quarters. I do not find a corresponding statistically-significant increase in inflation

expectations in normal times. However, I also cannot reject that the difference between

normal-times and the zero lower bound reflects sampling variance.

Figure 6(b) displays the response of unemployment to the same shock. At the zero lower

9Hayashi and Koeda (2017) study QE in Japan with an endogenous-regime-switching SVAR.
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bound the unemployment rate increases, and reaches a peak response of 9 basis points after

ten months. The increase is statistically significant at conventional levels. It then dissipates

and becomes statistically insignificant twelve months after the shock. In normal times the

peak unemployment response is only three basis points and marginally significant.

In figure 6(c) I plot the estimated effect on industrial production. At the zero lower bound

industrial production contracts sharply, reaching a statistically-significant peak decline of

0.6% after two months. In the following months industrial production recovers and becomes

statistically insignificant. I do not find evidence of a similar contraction in normal times.

But the confidence bands for the zero lower bound and normal times do overlap, so I cannot

reject that the responses are the same.

Figure 6(d) shows the impulse response function for monthly consumption expenditure.10

This series is volatile and so are the impulse response functions. Nevertheless, at the zero

lower bound, both the decline in consumption expenditures and the cumulative effect (the

area under the impulse response function) are significant at the 10% level. There is only

weak evidence for a decline in consumption expenditures during normal times.

Last, I verify that the oil supply shocks do not raise current and expected nominal interest

rates at the zero lower bound. I therefore estimate equation (6) using changes in nominal

bond yields as outcome variables. I use 12-month changes, which are less noisy than one-

month changes. In figure 7 I plot the response of the bond yields on news of an oil supply

shock. For the zero lower bound I estimate that nominal bond yields at all maturities exhibit

a decline after an oil supply shock at the zero lower bound. For normal times, in contrast,

there is evidence that expected future nominal interest rates first decline and then increase

at longer maturities.

10I use the real consumption expenditure index for “Two-or-more-person Households” from the Family
Income and Expenditure Survey (link).
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Figure 6 – Impulse response functions to negative oil supply shocks in Japan. The zero lower bound regime is 10/1995 through
6/2006 and 1/2009 through 9/2015. The normal times regime are all other months from 1/1986 through 9/2015. Impulse response
functions are constructed from estimates of autoregressive distributive lag equation (6) in changes or growth rates and aggregated
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The decline in expected nominal interest rates at the zero lower bound and the increase in

expected inflation combine to lower expected real interest rates, which are the key quantity

setting off the intertemporal consumption boom in the new Keynesian model. And for a

limited sample I can directly estimate the effect of oil supply shocks on expected real interest

rates. Bloomberg has data for the 10-year real bond yield in Japan from April 2004 through

March 2009 and again starting in October 2013. I also construct a synthetic real bond from

10-year nominal bond yields and 10-year swap rates, which are available from March 2007

through today. For the overlap period, I use synthetic real bond yields rather than actual

real bond yields because the former behave less erratically. With these data, I estimate that

10-year real bond yields decline by roughly the same amount as nominal bond yields. This

suggests that long-run nominal rates largely capture the long-run real interest rate response
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to oil supply shocks (figure 7).

Thus, my empirical results are inconsistent with the prediction of the standard new

Keynesian model. Negative oil supply shocks are contractionary at the zero lower bound,

even though expected inflation rises and nominal interest rates do not. In appendix C I

show that this result is robust to different estimation equations (6), sample periods, or VAR

specifications (5).

4.1. Zero lower bound vs normal times

A weaker interpretation of the standard new Keynesian model is that negative supply

shocks are less contractionary at the zero lower bound than in normal times. In normal

times the central bank raises nominal and real interest rates, which is contractionary. But

this contractionary force is absent when the zero lower bound is, and remains, a binding

constraint. Yet, the impulse response functions in figure 6, if anything, show that negative

oil supply shocks cause a larger contraction at the zero lower bound than in normal times,

even though expected future nominal interest rates rise more in normal times than at the

zero lower bound. The confidence intervals for the contraction at the zero lower bound and in

normal times do typically overlap, so I cannot establish that the impulse response functions

are statistically different. But even an equal output response is evidence against this weaker

prediction of the standard new Keynesian model.

The only variable that responds with a different sign across the regimes is the long-term

nominal bond yield, which rises in normal times and falls at the zero lower bound. One inter-

pretation is that the increase in normal times reflects the Taylor principle. Consistent with

this hypothesis, the evidence for higher long-term nominal bond yields weakens considerably

when I include data before 1986. (Including these earlier data has, however, little effect on

the impulse response functions for real outcomes.) At the zero lower bound, by contrast, the

central bank may be more willing to accommodate an oil supply shock, because it causes a

more severe contraction. A second hypothesis is that the differences simply reflect sampling
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error. Either way, the zero lower bound estimates are not moving in the direction predicted

by the standard new Keynesian model.

4.2. Auxiliary evidence

As corroborating evidence for the time-series methodology above, I conduct an event

study around the Libyan civil war.11 Before the civil war, Libya produced approximately 2%

of global oil supply. The beginning of the civil war is typically dated on February 15th 2011.

Foreign intervention officially commenced on March 19th. This conflict caused a significant

contraction in Libyan oil production, which by April had declined by almost 90% relative to

pre-war levels. Thus, the Libyan civil war constituted a relatively large and exogenous shock

to global oil production. Consistent with this interpretation, my oil supply shock series also

display a cumulative 1.1 standard deviation oil supply shock over February 2011 and March

2011. However, while this oil supply shock is plausibly exogenous, to the extent that foreign

governments increase military spending it may be correlated with a positive demand shock.

In that case, this event study is biased against finding contractionary effects from negative

supply shocks.

To determine the effects of this oil supply shock on expected inflation and real economic

activity I proceed as in section 3. The timing of the oil supply disruptions associated with

the Libyan civil war are less precise than the timing of the Japanese earthquake. It could

plausibly be dated on February 15th 2011 or to the beginning of foreign intervention on

March 19th. Thus, I run an event study for the U.S. using both these dates. I omit Japan

because the second event date occurs a few days after the Great East Japan Earthquake.

In figure 8 I compare pre-February 15th forecasts for output and inflation with forecasts

from March and April. The figure also display ex-post data. For both event dates expected

inflation increases, consistent with the occurrence of a negative supply shock. In addition,

for both event dates output forecasts were revised downwards and ex-post output came in
11I thank James Hamilton for suggesting this application. The impact of the Libyan civil war on the global

oil market is studied in detail in Kilian and Lee (2014) and Bastianin and Manera (2017).
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even lower. These negative comovoments between expected inflation and output, as well

as actual inflation and output, suggest that the Libyan civil war and associated oil supply

disruption were contractionary at the zero lower bound.

As before, I need to check that current and expected nominal interest rates do not rise

following each event. For the March 19th event the 10-year nominal bond yield does rise by

6 basis points, but from February 14th to February 16th the 10-year nominal bond yield was

unchanged. Thus, the outcomes for the February 14th event are inconsistent with the new

Keynesian prediction, corroborating my results in section 4.

5. Discussion

While my empirical analysis rejects the prediction that negative supply shocks are expan-

sionary at the zero lower bound, it does not point to a particular “fix” of the new Keynesian

model. I therefore highlight several proposals in the literature that eliminate this prediction.

These proposals also overturn other unusual policy predictions for the zero lower bound,

such as large fiscal multipliers.

Cochrane (forthcoming) shows that the unusual policy predictions are a consequence

of equilibrium selection. The Taylor principle combined with a fixed, zero inflation target

implies that the unique forward-bounded equilibrium must have zero inflation upon exiting

the zero lower bound, π(T ) = 0. This equilibrium explodes backward in time, generating

a large fall in inflation and output when agents learn of a negative natural rate shock.

However, by replacing the fixed inflation target with a glide-path towards zero inflation, the

central bank could instead select a more benign equilibrium that does not explode backward

in time (“backward-stable”). This equilibrium, and any other equilibrium that bounds the

initial jump in inflation, also produces conventional outcomes: negative supply shocks are

contractionary and fiscal multipliers are below 1 at the zero lower bound. For example, in

the backward-stable equilibrium of the simple model in section 2, the negative productivity
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shock lowers consumption and output under passive monetary policy,

y(t) = c(t) = κā

λ1 − λ2

[
λ1(1− eλ2t)− λ2(1− e−λ1(T−t))

]
< 0,

π(t) = κā

λ1 − λ2
(e−λ1(T−t) − eλ2t).

Inflation is initially positive as in the data, π(0) > 0, but gradually turns into deflation.

Ultimately prices are lower in the long-run. Thus, expected real interest rates are high,

inducing consumers today to postpone consumption, which generates the contraction.

Boneva et al. (2016) solve a fully-nonlinear new Keynesian model, subject to a two-state

Markov process where the low state corresponds to the zero lower bound. They highlight

a bifurcation in the parameter space. When the persistence of the zero lower bound is

moderate, then the model generates unusual policy predictions. But when the persistence

of the zero lower bound is high, then labor tax cuts are expansionary and fiscal multipliers

are below 1. Similarly, Mertens and Ravn (2014) obtain conventional comparative statics

because their pessimism shock is highly persistent. Typically this part of the parameter space

is ruled out by conventional new Keynesian equilibrium selection rules due to multiplicity.

However, Aruoba, Cuba-Borda, and Schorfheide (forthcoming) provide evidence that it is

relevant for Japan. Boneva et al. (2016) also show that labor tax cuts are expansionary and

fiscal multipliers are small in the fully nonlinear model when the persistence of the zero lower

bound is low.

Kiley (2016) replaces the sticky-price Phillips curve with a sticky-information Phillips

curve in an otherwise standard new Keynesian model. This change anchors the long-run price

level under passive monetary policy, which limits the scope for intertemporal substitution

from negative supply shocks or fiscal policy. His model generates both a contraction from

negative supply shocks and fiscal multipliers below 1 when the nominal interest rate is

constant.
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6. Conclusion

The standard new Keynesian model predicts that economies are governed by different

rules at the zero lower bound. In these models aggregate demand is determined by intertem-

poral substitution. Lower real interest rates induce consumers to pull consumption forward,

which raises output. Lower productivity or higher government spending raises marginal costs

and expected inflation. If the central bank does not react to higher inflation, for example be-

cause it is constrained by the zero lower bound, then expected real interest rates fall causing

a consumption and output boom.

I test and reject this prediction. I study the Great East Japan Earthquake and oil supply

shocks as two examples of negative supply shocks that raise the marginal cost of production.

I verify that both shocks raise expected inflation and do not raise expected nominal interest

rates as implied by theory, but I find that these events are still contractionary overall. I

highlight variants of the new Keynesian model that are consistent with my empirical results.

These models also overturn other unusual policy predictions for the zero lower bound, such

as large fiscal multipliers. My findings suggest that policy makers should be cautious in

expecting large positive outcomes based on the standard new Keynesian model at the zero

lower bound. Contrary to Krugman’s claim, the zero lower bound world may not be so

“topsy-turvy” after all.
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A. Solving the model

Following Cochrane (forthcoming), I solve the model using lag operators. Differentiating

equation (2) and combining with (1) yields a second-order difference equation in inflation,

d2π(t)
dt2

− ρdπ(t)
dt
− κ∗π(t) = −κ∗

[
i(t)− ρ− da(t)

dt

]
.

A.1. Normal times

I substitute i(t) = ρ+ φπ(t) to get,

d2π(t)
dt2

− ρdπ(t)
dt

+ κ∗(φ− 1)π(t) = κ∗
da(t)
dt

.

Using lag operators I factor the left-hand-side,(
d

dt
− µ1

)(
d

dt
− µ2

)
π(t) = κ∗

da(t)
dt

,

where the eigenvalues µ1, µ2 are given in the text. The real part of both eigenvalues is

positive. I next rewrite the factored equation as,

π(t) = 1
µ1 − µ2

[
1

d
dt
− µ1

− 1
d
dt
− µ2

]
κ∗
da(t)
dt

.

The solution of the
(
d
dt
− µ1

)
π(t) = κ∗ da(t)

dt
piece is,

π(t) = k1e
µ1t − κ∗

∫ ∞
s=t

e−µ1(s−t)da(s)
ds

ds,

and the forward-boundedness assumption restricts k1 = 0.

The solution of the
(
d
dt
− µ2

)
π(t) = κ∗ da(t)

dt
piece is,

π(t) = k2e
µ2t − κ∗

∫ ∞
s=t

e−µ2(s−t)da(s)
ds

ds,

and the forward-boundedness assumption restricts k2 = 0.
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Combining the two solutions I get

π(t) = κ∗

µ1 − µ2

∫ ∞
s=t

[
−e−µ1(s−t) + e−µ2(s−t)

] da(s)
ds

ds.

Then use equation (2)

κ∗c(t) = κ∗a(t) + ρπ(t)− dπ(t)
dt

to get

κ∗c(t) = κ∗a(t)− κ∗(ρ− µ1)
µ1 − µ2

∫ ∞
s=t

e−µ1(s−t)da(s)
ds

ds+ κ∗(ρ− µ2)
µ1 − µ2

κ∗
∫ ∞
s=t

e−µ2(s−t)da(s)
ds

ds.

Substitution of the step-function process for a(t) yields the expression in the text. Note

that under the assumed shock process the equilibrium also satisfies the π(T ) = 0 restriction.

A.2. Zero Lower Bound

I substitute i(t) = ρ to get,

d2π(t)
dt2

− ρdπ(t)
dt
− κ∗π(t) = κ∗

da(t)
dt

.

The factorization is now,(
d

dt
− λ1

)(
d

dt
− λ2

)
π(t) = κ∗

da(t)
dt

,

where the eigenvalues λ1 > 0 and λ2 < 0 are given in the text.

Again rewrite this equation as

π(t) = 1
λ1 − λ2

[
1

d
dt
− λ1

− 1
d
dt
− λ2

]
κ∗
da(t)
dt

.

The solution of the
(
d
dt
− λ1

)
π(t) = κ∗ da(t)

dt
piece is,

π(t) = k1e
λ1t − κ∗

∫ ∞
s=t

e−λ1(s−t)da(s)
ds

ds,

and the forward-boundedness assumption restricts k1 = 0.
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The solution of the
(
d
dt
− λ2

)
π(t) = κ∗ da(t)

dt
piece is,

π(t) = k2e
λ2t + κ∗

∫ t

s=−∞
eλ2(t−s)da(s)

ds
ds,

which is stable for all k2 since λ2 < 0.

Combining the two solutions I get

π(t) = 1
λ1 − λ2

[
−κ∗

∫ ∞
s=t

e−λ1(s−t)da(s)
ds

ds− k2e
λ2t − κ∗

∫ t

s=−∞
eλ2(t−s)da(s)

ds
ds

]
.

To pin down k2 I use the standard equilibrium selection π(T ) = 0,

π(T ) = 1
λ1 − λ2

[
−κ∗

∫ ∞
s=T

e−λ1(s−T )da(s)
ds

ds− k2e
λ2T − κ∗

∫ T

s=−∞
eλ2(T−s)da(s)

ds
ds

]
= 0.

(In section 5 I instead select the backward-stable equilibrium, k2 = 0.)

Solving for k2 and substituting into the expression for π(t) for 0 ≤ t ≤ T yields,

π(t) = κ∗

λ1 − λ2

∫ T

s=t

[
−e−λ1(s−t) + eλ2(t−s)

] da(s)
ds

ds.

Then use equation (2)

κ∗c(t) = κ∗a(t) + ρπ(t)− dπ(t)
dt

to get

κ∗c(t) = κ∗a(t)− κ∗(ρ− λ1)
λ1 − λ2

∫ T

s=t
e−λ1(s−t)da(s)

ds
ds+ κ∗(ρ− λ2)

λ1 − λ2

∫ T

s=t
eλ2(t−s)da(s)

ds
ds.

Again, substitution for the assumed path a(t) yields the expression in the text.
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B. Smets-Wouters Impulse Response Functions
I generate impulse response functions following Bodenstein, Erceg, and Guerrieri (2017)

and Coibion, Gorodnichenko, and Wieland (2012). The Smets and Wouters (2007) model

consists of a system of linearized difference equations,

AEtxt+1 +Bxt + Cxt−1 +Dεt = 0, (7)

where xt is a vector of endogenous variables, and εt is a vector of shocks. The locally unique

forward-bounded solution around the zero-inflation steady state can be written as

xt = Pxt−1 +Gεt.

Standard software packages such as Dyanare can be used to obtain the matrices P and G.

The impulse response function for normal times is then

xt = P tGε0.

To capture the zero lower bound regime, I use an interest rate peg that lasts for T

quarters. Thus, I replace the interest rate rule in (7) with i(t) = ρ for 0 ≤ t ≤ T . Denote the

new matrices A∗, B∗, C∗, and D∗. I solve the model under perfect foresight and impose the

terminal condition xT+1 = PxT . (The second step is equivalent to selecting the π(T ) = 0

equilibrium in the simple model.) The impulse response function is,

x0 = −(B∗ + A∗M (0))−1D∗ε0

xt = M (t)xt−1,

where the matrices M (t) are defined recursively,

M (T ) = −(B∗ + A∗P )−1C∗

M (t−1) = −(B∗ + A∗M (t))−1C∗.
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C. Robustness

I document the robustness of my findings to alternative econometric specifications, sam-

ples, and VAR specifications.

First, I exclude lagged dependent variables from the regression in (6). If the oil supply

shocks are well-identified then they should be orthogonal and the inclusion of lagged depen-

dent variables is unnecessary. Further, equation (6) imposes an autoregressive structure on

the dynamics, which may be at odds with the data. However, including lagged dependent

variables does sharpen the precision of my estimates and guards against small-sample corre-

lation of oil supply shocks with lagged outcomes. In the end, the impulse response functions

with and without lagged dependent variables in figure 9(a) are quite similar.

Second, the VAR-identified oil supply shocks may have positive small sample correlation

with the 2008 financial crisis. To address this concern, I set all oil supply shocks to zero

from 2007 through 2009. Figure 9(b) shows that this robustness check only leads to minor

changes in the impulse response function.

Third, rather than separating time-periods into a discrete zero lower bound regime and

a normal-times regimes, I let the state vary continuously as in Auerbach and Gorodnichenko

(2012) and Ramey and Zubairy (forthcoming). I index the state by F (zt), where 0 ≤ F (z) ≤

1 captures the degree to which the zero lower bound binds. As indicator of the severity of

the zero lower bound constraint, I let zt be the centered seven-month moving average of the

two-year bond yield. In the event that this value is negative, I set it to 0.01bp. Relative

to shorter-maturity yields, the two-year bond yield also captures differences in the expected

duration of the zero lower bound. I then define F as a logistic function following Auerbach

and Gorodnichenko (2012),

F (zt) =
exp

{
−θ ln(zt)−c

std(ln zt)

}
1 + exp

{
−θ ln(zt)−c

std(ln zt)

} ,
where the parameter θ captures the smoothness between regimes. When θ = 0 the regime is
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constant, whereas if θ →∞ the regime switches discretely between 0 and 1. The parameter

c determines the switching point—when ln(zt) = c then F = 0.5 for all finite θ. I set c such

the 75th percentile of zt in my baseline zero lower bound regime corresponds to F (zt) = 0.5.

This is a conservative cut-off relative to my baseline delineation since for θ → ∞ it would

drop 25% of my baseline zero lower bound sample. I let θ = 2, which generates a smoother

regime shift relative to the baseline.

I then estimate the local projection

∆yt+h = αh +
m∑
j=1

βF=0
j,h [∆yt−j × (1− F (zt))] +

m∑
j=1

βF=1
j,h (∆yt−j × F (zt)) (8)

+
k∑
j=0

γF=0
j,h [oilt−j × (1− F (zt))] +

k∑
j=0

γF=1
j,h (oilt−j × F (zt)) + δF (zt) + ηt+h

and display the coefficients {γF=1
0,h }18

h=0 for the zero lower bound and {γF=0
0,h }18

h=0 for normal

times in figure 10(a). The impulse response functions are again similar to my baseline

specification. I have also tried values of θ in the range from 1 to 10 and longer-maturity

bond yields, but this did not notably change the results. This suggests that the two-state

delineation in my baseline is a reasonable benchmark.

Fourth, I assess to what extent oil supply shocks are also contractionary in the U.S.

when the zero lower bound is a binding constraint. The U.S. provides useful complementary

evidence because it is also a major oil importer over the sample period, and it has now

spent more than six years at the zero lower bound. A limitation of this that the inflation

expectations response is not statistically significant12, and the confidence bands for expected

nominal and real interest rates are quite wide. Nevertheless, the impulse response functions

for unemployment in the U.S. (Figure 10(b)) is similar to Japan: there is a statistically

significant increase in unemployment at the zero lower bound in the short-run, and this

contraction is larger than in normal times.

Fifth, I estimate oil supply shocks from a regime-switching VAR. This helps assess if the

12For the U.S., I use the Michigan Survey inflation expectations data, which, unlike the Consensus Eco-
nomics data, is available at monthly frequency.
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linear VAR structure for the world oil market is a useful benchmark. I again index the state

by a function G(wt), where 0 ≤ G(w) ≤ 1 captures the degree to which the zero lower bound

binds globally. I uncover oil supply shocks from the first equation of the regime-switching

VAR,

∆prodt = α + δG(wt) +
24∑
j=1

AG=0
j [xt−j × (1−G(wt))] +

24∑
j=1

AG=1
j [xt−j ×G(wt)] + εt.

where xt = (∆prodt, reat, rpot)′.

I use two different calibrations for the G function. First, I set it to 1 after January 2009.

This parameterization captures that the zero lower bound was only a global phenomenon

after the financial crisis.

Second, similar to the local projections approach, I let G be a logistic function

G(wt) =
exp

{
−θ ln(wt)−c

std(lnwt)

}
1 + exp

{
−θ ln(wt)−c

std(lnwt)

} ,
where wt is an oil consumption weighted average of national overnight nominal interest

rates. I construct this variable using the overnight nominal interest rate data from the

OECD, which includes all OECD members, the BRICS, Indonesia and Lithuania. I weight

them using oil consumption data from the EIA, the same source as the oil production data.

These countries account for over 70% of global oil consumption in the 2000s. I then take the

seven-month centered moving average of this global interest rate.

I chose a calibration of c and θ to allow low interest rates to affect the dynamics of the

VAR, even though the average interest rate wt never falls below 2% in my sample, which

suggests a more limited role for the zero lower bound. I set c = ln(3), since wt falls below 3%

for the first time to in February 2009. This aligns with the discrete regime, which switches

to 1 in January 2009. I again set θ = 2, which yields relatively smooth variation for the

zero lower bound state compared to the discrete-regime VAR. It implies that a world with

an average interest rate of 2.9% is not that different from a world with an average interest

rate of 3.1%. This is a useful counterpoint to the discrete-regime, where these two worlds
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are in different regimes. (Letting θ → ∞ makes the smooth-regime close to the discrete-

regime, with the only difference that the former becomes 1 in February 2009 and the latter

in January 2009.)

Using these oil supply shock series, I construct impulse response functions for Japan

as before. Figure 11 shows that the results are similar to the baseline. Further, there is

relatively little difference between the discrete-regime and the smooth-regime VAR.

40



−
.1

0
.1

.2
U

n
e
m

p
lo

y
m

e
n
t 
(p

e
rc

e
n
ta

g
e
 p

o
in

ts
)

0 2 4 6 8 10 12 14 16 18
Months

Baseline

Baseline 95% CI

No Lagged Dependent Variables

(a) No lagged dependent variables

−
.1

0
.1

.2
U

n
e
m

p
lo

y
m

e
n
t 
(p

e
rc

e
n
ta

g
e
 p

o
in

ts
)

0 2 4 6 8 10 12 14 16 18
Months

Baseline

Baseline 95% CI

Setting Shocks in 2007−2009 to Zero

(b) Setting oil supply shocks to zero from 2007-2009
Figure 9 – Robustness checks on impulse response functions of unemployment to negative
oil supply shocks. These are constructed from estimates of autoregressive distributive lag
equation (6) in changes or growth rates and aggregated to levels. 95% confidence intervals
are derived from a parametric bootstrap based on a heteroscedasticiy and autocorrelation-
robust covariance matrix and corrected for the presence of estimated regressors following
Murphy and Topel (2002). Sample and lag lengths are as in the baseline.
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(b) U.S. Unemployment
Figure 10 – Robustness checks on impulse response functions of unemployment to negative
oil supply shocks. These are constructed from estimates of autoregressive distributive lag
equation (6) or local projection equation (8) in changes or growth rates and aggregated to
levels. 95% confidence intervals are derived from a parametric bootstrap based on a het-
eroscedasticiy and autocorrelation-robust covariance matrix and corrected for the presence
of estimated regressors following Murphy and Topel (2002). Sample and lag lengths are as
in the baseline for figure (a). For the U.S., lag lengths are m = 12 and k = 6 and the zero
lower bound regime begins in 1/2009.
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(a) Discrete-regime VAR
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(b) Smooth-regime VAR
Figure 11 – Robustness checks on impulse response functions of unemployment to negative
oil supply shocks. These are constructed from estimates of autoregressive distributive lag
equation (6) in changes or growth rates and aggregated to levels. 95% confidence intervals
are derived from a parametric bootstrap based on a heteroscedasticity and autocorrelation-
robust covariance matrix and corrected for the presence of estimated regressors following
Murphy and Topel (2002). Sample and lag lengths are as in the baseline.
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D. Continuous-time new Keynesian Phillips curve

A continuum of firms indexed by i ∈ [0, 1] produces output Yi with the technology

Yi(t) = A(t)Li(t).

where A is aggregate productivity and Li is labor input. I assume that labor is perfectly

mobile across firms.

Relative demands for each firm are,

Yi(t) =
(
Pi(t)
P (t)

)−θ
Y (t).

where Pi is the nominal price of variety i, P is the aggregate price index and θ > 1 is the

elasticity of substitution across goods. Aggregate output is defined as,

Y (t) =
(∫ 1

0
Yi(t)

θ−1
θ di

) θ
θ−1

.

and aggregate price index is,

P (t) =
(∫ 1

0
Pi(t)1−θdi

) 1
1−θ

.

The gross inflation rate of the aggregate price index is denoted by Π(t).

With Poisson intensity λdt a firm can reset its nominal price. The optimal reset price

P ∗i (t) maximizes the sum of discounted profits while the price is not reset,

max
P ∗
i (t)

∫ ∞
t

e−(ρ+λ)(s−t)C(s)−σ
[
(1 + τ)P

∗
i (t)
P (s) Yi(s)−

W (s)
P (s) Li(s)

]
ds,

where ρ is the discount rate, C−σ captures the contingent valuation of real profits, τ is an

output subsidy and W
P

is the real wage. Because labor is perfectly mobile, the latter is the

same across firms.
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Substituting for relative demand and the production function yields,

max
P ∗
i (t)

∫ ∞
t

e−(ρ+λ)(s−t)C(s)−σ
(1 + τ)

(
P ∗i (t)
P (s)

)1−θ

Y (s)− W (s)
P (s)

(
P ∗i (t)
P (s)

)−θ (
Y (s)
A(s)

) ds.
The first order condition for the firms real reset price is,

(
P ∗i (t)
P (t)

)
= θ

(θ − 1)(1 + τ)

∫∞
t e−(ρ+λ)(s−t)C(s)−σ W (s)

P (s)

(
P (t)
P (s)

)−θ (Y (s)
A(s)

)
ds∫∞

t e−(ρ+λ)(s−t)C(s)−σ
(
P (t)
P (s)

)1−θ
Y (s)ds

.

Since the right-hand-side is independent of i, each firm would pick the same reset price at t. I

assume that the output subsidy is set such that the steady state mark-up is zero, τ = θ
θ−1−1.

The log-linear approximation around the zero-inflation steady state is,

b(t) = (ρ+ λ)
∫ ∞
t

e−(ρ+λ)(s−t)
[
ω(s)− a(s) + 1

ρ+ λ
π(s)

]
ds

where b(t) = log(P ∗(t)
P (t) ), ω(t) = log(W (t)

P (t) )−log(W
P

), a(t) = log(a(t))−log(a), y(t) = log(y(t))−

log(y) and π(t) = log(Π(t)).

We can rewrite this first order condition as a differential equation,

db(t) = −(ρ+ λ)
[
ω(t)− a(t) + 1

ρ+ λ

(
1 + αθ

1− α

)
π(t)

]
dt+ (ρ+ λ)b(t)dt

Without indexation, the gross inflation rate is solely a function of the reset price and the

Calvo intensity,

π(t) = λ

1− θ

(P ∗(t)
P (t)

)1−θ

− 1


The log-linear approximation to this law of motion is,

π(t) = λb(t),

which implies,

dπ(t) = λdb(t).
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Combining these two expressions for b(t) and db(t) with the firm’s first order condition yields,

dπ(t) = −κ [ω(t)− a(t)] dt+ ρπ(t)dt

where κ = λ(ρ+ λ).

Equation (2) obtains with period utility function lnC(t)− χL(t),

ω(t) = c(t) = y(t)

κ∗ = κ

where the first equation is the first order condition for household labor supply.

The new Keynesian Phillips curve with government spending obtains with period utility

function lnC(t)− χL(t)1+ν

1+ν and a steady state share of government spending sg > 0,

ω(t) = c(t) + νl(t) = (1 + ν(1− sg))c(t) + νsgg(t)− νa(t)

κ∗ = κ(1 + ν(1− sg))

ψa = 1 + ν

ψg = νsg
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E. Model with explicit zero lower bound

This section shows that an interest rate peg yields the same outcome for the negative

productivity shock as a scenario where the zero lower bound binds until T .

I now allow for a shock to the natural rate of interest r(T ) as in Werning (2012) and

explicitly incorporate the zero lower bound in the interest rate rule,

dc(t)
dt

= i(t)− π(t)− r(t)

dπ(t)
dt

= ρπ(t)− κ∗[c(t)− a(t)]

i(t) = max{ρ+ φπ(t), 0}, φ > 1

As before there is a productivity supply shock until time T ,

a(t) = ā < 0 0 ≤ t < T,

a(t) = 0 t ≥ T.

I also assume that the natural rate of interest is sufficiently negative that the zero lower

bound binds until time T ,13

r(t) = r̄ < 0 0 ≤ t < T,

r(t) = ρ t ≥ T.

After T , the central bank implements π(T ) = 0 per the usual equilibrium selection. This

immediately implies that c(t) = π(t) = 0 for t ≥ T .

13A sufficient condition is

κ∗

λ1 − λ2

[
1
λ2

(1− e−λ2(T−t))− 1
λ1

(1− e−λ1(T−t))
]
r̄ + κ∗

λ1 − λ2
(e−λ1(T−t) − e−λ2(T−t))ā < −ρ
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The model dynamics for 0 ≤ t < T are,

dc(t)
dt

= −π(t)− r̄ (9)

dπ(t)
dt

= ρπ(t)− κ∗[c(t)− ā] (10)

This model is linear with boundary condition π(T ) = 0, which can be solved using standard

methods. The solution is,

c(t) = 1
λ1 − λ2

[
λ1

λ2
(1− e−λ2(T−t))− λ2

λ1
(1− e−λ1(T−t))

]
r̄

+ 1
λ1 − λ2

[
λ1(1− eλ2(T−t))− λ2(1− e−λ1(T−t))

]
ā

π(t) = κ∗

λ1 − λ2

[ 1
λ2

(1− e−λ2(T−t))− 1
λ1

(1− e−λ1(T−t))
]
r̄ + κ∗

λ1 − λ2
(e−λ1(T−t) − e−λ2(T−t))ā

The coefficients on ā are identical to those reported in the text, as was to be shown.
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F. A small-open-economy model with oil imports

I consider the case of a small open economy that imports oil for the purpose of production.

It pays for these imports by exporting the produced output. Home agents maximize the

stream of utility, ∫ ∞
0

e−ρt
[
C(t)1−σ

1− σ − χL(t)
]
dt,

where C(t) is domestic consumption and L(t) is labor. The inverse of the intertemporal

elasticity of substitution is σ and χ is a parameter that determines steady state labor supply.

Domestic consumption C(t) is an aggregate of a produced good Cy and consumed oil Oc,

C(t) =
[
(1− γ)

1
ζCy(t)

ζ−1
ζ + γ

1
ζOc(t)

ζ−1
ζ

] ζ
ζ−1

.

The produced good is a combination of individual varieties,

Cy(t) =
(∫ 1

0
Ci(t)

ε−1
ε di

) ε
ε−1

.

Home asset holdings of the risk-free bond D(t) evolve according to

dD(t) = [i(t)D(t)− P (t)C(t) +W (t)L(t) + Π(t)]dt,

where i(t) is the nominal interest rate, W (t) the wage rate, and Π(t) are profits from firms.

Firms produce output Yi(t) of variety i according to a CES technology,

Yi(t) =
[
(1− ξ)

1
ψ [A(t)Li(t)]

ψ−1
ψ + ξ

1
ψOy

i (t)
ψ−1
ψ

] ψ
ψ−1

where Oi(t) is oil input, ξ the share of oil in production, and ψ its elasticity of substitution

with labor input. Firms face standard Calvo pricing frictions.

Total imports of oil by the small home economy are

O(t) =
∫ 1

0
Oy
i (t)di+Oc(t)

The foreign economy is large relative to the domestic economy. It exports oil to the home
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economy in exchange for produced goods CyH∗(t), where H∗ denotes an import of the home

good by the foreign country. Its consumption bundle is given by

C∗(t) =
[
(1− γ)

1
ζCy∗(t)

ζ−1
ζ + γ

1
ζOc∗(t)

ζ−1
ζ

] ζ
ζ−1

.

which is analogous to the home country. I denote foreign quantities with a ∗, i.e. C∗(t) is

foreign consumption.

Foreign consumption of produced goods is a combination of imported goods and locally-

produced goods,

Cy∗(t) =
[
(1− α)

1
η (CyF∗(t))

η−1
η + α

1
η (CyH∗(t))

η−1
η

] η
η−1

where α is the share of foreign goods in consumption produced consumption and η the

elasticity of substitution among home and foreign goods. Because the foreign economy is

large, the share of home goods in foreign consumption is close to zero, α∗ → 0.

The foreign economy is endowed with an exogenous supply of oil O∗(t) and the real price

of oil in foreign goods P o∗(t)
P ∗(t) will adjust such that the oil market clears,

O∗(t) =
∫ 1

0
Oy∗
i (t)di+Oc∗(t)

Note that because the home economy is small, it has no influence on the oil market and

thus no influence on the foreign real oil price. In all other aspects the foreign economy has

identical preferences and constraints.

I assume that the law of one price holds. I then define the following relative prices. The

real exchange rate Q(t) is equal to

Q(t) = E(t)P ∗(t)
P (t) ,

where E(t) is the nominal exchange rate. The terms of trade,

S(t) = P o(t)
P y(t) ,
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is equal to the ratio of the domestic oil price P o and the consumption good price P y.

The net foreign asset position of the home economy (denominated in home currency)

evolves according to

dNFA(t) = [P y(t)CyH∗(t)− P o(t)O(t)]dt+ i(t)NFA(t)dt,

F.1. Log-linearization

The log-linearized equations of the domestic economy are

dc(t) = σ−1[i(t)− ρ− π(t)]dt

π(t) = πy(t) + γdpo(t)/dt

dπy(t) = ρπ(t)ydt− κ mc(t)dt

i(t) = max{r(t) + φππ(t), 0}, φπ > 1

ω(t) = σc(t)

y(t) = (1− ξ)a(t) + (1− ξ)l(t) + ξoy(t)

y(t) = (1− ξ)(1− γ)cy(t) + [1− (1− ξ)(1− γ)]cyH∗(t)

cy(t) = oc(t) + ζ

1− γ p
o(t)

c(t) = (1− γ)cy(t) + γoc(t)

mc(t) = ω(t)− ψ−1(y(t)− l(t))− (1− ψ−1)a(t)

oy(t) = l(t)− ψ(po(t)− ω(t))− (ψ − 1)a(t)

o(t) = γ

(1− γ)ξ + γ
oc(t) + (1− γ)ξ

(1− γ)ξ + γ
oy(t)

po(t) = po∗(t) + q(t)

cyH∗(t) = c∗(t) + η
1

1− γ q(t) + ζ
γ

1− γ p
o∗(t)

where lower-case letters denote log-deviations from steady state. po is the (domestic) real

price of oil in terms of the produced good. An analogous set of equations governs the foreign
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economy, with the exception that y∗(t) = cy∗(t) since that economy only exports oil,

dc∗(t) = σ−1[i∗(t)− ρ− π∗(t)]dt

π∗(t) = πy∗(t) + γdpo∗(t)/dt

dπy∗(t) = ρπy∗(t)dt− κ mc∗(t)dt

i∗(t) = max{r(t) + φππ
∗(t), 0}, φπ > 1

ω∗(t) = σc∗(t)

y∗(t) = (1− ξ)a(t) + (1− ξ)l∗(t) + ξoy∗(t)

y∗(t) = cy∗(t)

cy∗(t) = oc∗(t) + ζ

1− γ p
o∗(t)

c∗(t) = (1− γ)cy∗(t) + γoc∗(t)

mc∗(t) = ω∗(t)− ψ−1(y∗(t)− l∗(t))− (1− ψ−1)a(t)

oy∗(t) = l∗(t)− ψ(po∗(t)− ω∗(t))− (ψ − 1)a(t)

o∗(t) = γ

(1− γ)ξ + γ
oc∗(t) + (1− γ)ξ

(1− γ)ξ + γ
oy∗(t)

The log-linearized equations of the domestic economy can be reduced to

dc(t) = σ−1[i(t)− ρ− π(t)]dt

π(t) = πy(t) + γ[dpo∗(t) + dq(t)]/dt

dπy(t) = ρπy(t)dt− κ{(1− ξ)σc(t)− (1− ξ)a(t) + ξ[po∗(t) + q(t)]}dt

while the foreign economy is rewritten as

dc∗(t) = σ−1[i∗(t)− ρ− π∗(t)]dt (11)

π∗(t) = πy∗(t) + γdpo∗(t)/dt

dπy∗(t) = ρπy∗(t)dt− κ{(1− ξ)σc∗(t)− (1− ξ)a(t) + ξpo∗(t)}dt
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The real price of oil is determined by market clearing in the foreign economy,

po∗(t) = Qcc
∗(t)−Qoo

∗(t)−Qaa(t) (12)

where the constants Qc, Qo, Qa are positive,

Qc = γ + (1− γ)ξ + σψξ(1− γ)(1− ξ)
(1− ξ)[γζ + (1− γ)ξψ]

Qo = γ + (1− γ)ξ
(1− ξ)[γζ + (1− γ)ξψ]

Qa = (1− γ)ψξ
γζ + (1− γ)ξψ

The negative supply shock is a temporary disturbance to world oil supply,

o∗(t) = ō < 0 0 ≤ t < T,

o∗(t) = 0 t ≥ T.

To solve for the domestic economy’s allocation, I also need to specify the degree of market

(in)completeness.

F.2. Case 1: complete international financial markets

When financial markets are complete, domestic and foreign consumption are related by

the Backus-Smith condition

C(t) = ΘC∗(t)Q(t) 1
σ ,

where Θ is the relative Pareto weight. The log-linearized equation is

c(t) = c∗(t) + σ−1q(t)

I report solutions for two cases. First, when both economies follow an active interest rate
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policy,

i(t) = ρ+ φπ(t),

i∗(t) = ρ+ φπ∗(t),

where φ > 1 and second, when both economies follow an interest rate peg

i(t) = ρ

i∗(t) = ρ

Define the following parameters:

MNT = κ[(1− ξ)σ + ξQc]
σ−1(φ− 1)

1− γQc

> 0

KNT = κ

[
ξQo + {(1− ξ)σ + ξQc}

σ−1(φ− 1)γQo

1− σ−1(φ− 1)γQc

]

MZLB = −κ[(1− ξ)σ + ξQc]
σ−1

1− γQc

< 0

KZLB = κ

[
ξQo − {(1− ξ)σ + ξQc}

σ−1γQo

1 + σ−1γQc

]

The solution for active monetary policy is

κc(t) = κc∗(t) = 1
µ̃1 − µ̃2

[
µ̃1(1− eµ̃2(T−t))− µ̃2(1− e−µ̃1(T−t))

]
KNT ō

πy(t) = πy∗(t) = 1
µ̃1 − µ̃2

(e−µ̃1(T−t) − e−µ̃2(T−t))KNT ō

where the eigenvalues are,

µ̃1 = ρ

2 +

√
ρ2 − 4MNT

2 , µ̃2 = ρ

2 −

√
ρ2 − 4MNT

2 .

The solution for the constant interest rate rule is

κc(t) = κc∗(t) = 1
λ̃1 − λ̃2

[
λ̃1(1− eλ̃2(T−t))− λ̃2(1− e−λ̃1(T−t))

]
KZLB ō

πy(t) = πy∗(t) = 1
λ̃1 − λ̃2

(e−λ̃1(T−t) − e−λ̃2(T−t))KZLB ō
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where the eigenvalues are,

λ̃1 = ρ

2 +

√
ρ2 − 4MZLB

2 > 0, λ̃2 = ρ

2 −

√
ρ2 − 4MZLB

2 < 0.

If inflation rises at the zero lower bound given ō < 0, it must be that KZLB > 0. It then

immediately follows that the negative supply shock raises consumption, c(t) = c∗(t) > 0.

GDP in the model is equivalent to labor input l(t), which also expands

l(t) =
(

1− σξψ + ξψQc + γζ

1− γQc

)
︸ ︷︷ ︸

>0

c(t)−
(
ξψ + γζ

1− γ

)
Qoō > 0

This verifies the claim in the text.

F.3. Case 2: incomplete international financial markets

For this case, I assume that the only asset traded internationally is a one-period bond.

While the equilibrium under complete markets featured Θ = 1, in the equilibrium under

incomplete markets NFA(0) is given. Farhi and Werning (2016) show that the incomplete

market allocation is the sum of two components – the complete market allocation, denoted

CM , and an additional term, denoted δIMx for variable x,

cIM(t) = cCM(t) + δIMc , πIM(t) = πCM(t) + δIMπ , oc,IM(t) = oc,CM(t) + δIMoc ,

oy,IM(t) = oy,CM(t) + δIMoy , yIM(t) = yCM(t) + δIMy , lIM(t) = lCM(t) + δIMl ,

qIM(t) = qCM(t) + δIMq .

I solve for the incomplete market terms using the relationship between foreign and home

consumption,

c(t) = θ + c∗(t) + 1
σ
q(t).

where θ = ln Θ is new (post oil supply shock) Pareto weight. One can interpret θ < 0 as

a wealth transfer to the foreign economy. Given θ, we can calculate the incomplete market
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component of the home allocation as follows

δIMc = ξθ, δIMy = −(1− ξ){ξ(ση − 1) + γξ + γ(1− ξ)σζ + γ

1− γση}θ,

δIMq = −(1− ξ)σθ, δIMl = δIMy − σξψθ,

δIMπ = 0, δIMoy = δIMy + σ(1− ξ)ψθ,

δIMoc = [ξ + (1− ξ)σζ]θ,

Thus, the δIM -terms are constant because the home economy is forward looking and thus

instantaneously adjusts to the new wealth level.

The value for θ is determined by the balanced-trade condition. Define ˜NFA(t) =
C(s)−σ

P (s) NFA(t) as real financial assets in utility units. I let zero net financial assets, NFA(0) =

0, be the initial condition. Given the no-Ponzi scheme condition, ˜NFA(t) must satisfy,

˜NFA(t) =
∫ ∞
t

C(s)−σ
P (s)

(
CyH∗(s)− P (s)

P y(s)
P o(s)
P (s) O(s)

)
ds.

Log-linearizing this condition and using ˜NFA(0) = 0 we obtain,

∫ ∞
0

e−ρscyH∗(s)ds =
∫ ∞

0
e−ρs[ 1

1− γ p
o(s) + o(s)](s)ds,

which states that trade must be balanced in the long-run.

Substituting the linearized equation into the international budget constraint yields a

solution for the wealth effect θ,

θ = 1
σ(η − 1)(1− ξ)(1− γ)−1 + γ

(1−γ)ξ+γ
δIM
oc

θ
+ (1−γ)ξ

(1−γ)ξ+γ
δIM
oy

θ

∫ T

0
[c∗,CM(s)− 1

1− γ p
o∗,CM(s)−o∗,CM(s)]ds

Thus consumption, gross output and employment (GDP) are equal to,

cIM(t) = cCM(t) + ξθ

yIM(t) = yCM(t)− (1− ξ){ξ(ση − 1) + γξ + γ(1− ξ)σζ + γ
1−γση}θ

lIM(t) = lCM(t)− (1− ξ){ξ(ση − 1) + γξ + γ(1− ξ)σζ + γ
1−γση}θ − ξσψθ
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where the variable θ is a constant function of the oil supply shock, which ensures balanced

trade over the long-run. Under standard parameterizations,14 ση > 1, and a decline wealth

lowers consumption and unambiguously raises GDP as in a standard real-business-cycle

model. Thus, if a foreign, negative oil supply shocks reduces domestic wealth, then we may

observe a decline in consumption (if cCM(t) + ξθ < 0), but the expansion of gross output

(y) and GDP (l) in the complete markets model would be amplified, yIM(t) > yCM(t) and

lIM(t) > lCM(t). Therefore, a negative oil supply shock that reduces domestic wealth is

also expansionary at the zero lower bound in the standard new Keynesian model under

incomplete markets.

14For example, Ferrero, Gertler, and Svensson (2008) set σ = 1 and η = 2, while Bodenstein, Erceg,
and Guerrieri (2011) set σ = 1 and η = 1.5. Obstfeld and Rogoff (2005) argue that η = 2 is a reasonable
calibration balancing micro and macro estimates. However, they also suggest that micro estimates, which
imply larger values for η, are likely less biased. If we set η ≥ 2, then any intertemporal elasticity of
substitution σ−1 ≤ 2 will satisfy this condition. Bayesian estimation of medium-scale macroeconomic models
typically produce estimates in that range (e.g., Smets and Wouters, 2007).
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G. Are oil supply shocks forecastable?
I use the futures data available on the U.S. Energy Information Administration website,15

which provides 1, 2, 3, and 4-month crude oil future prices at daily frequency since 1983.

The one-month contract expires on the third business day prior to the 25th calendar day of

the month preceding the delivery month. If the 25th calendar day of the month is a non-

business day, trading ceases on the third business day prior to the business day preceding

the 25th calendar day. All subsequent contracts are for delivery on the months following the

one-month contract. Thus, for each contract I use the price the day before trading ceases

for the one-month contract.

I then construct changes in futures prices for the same delivery month. Let pt,t+k be the

log price at time t for oil delivered at time t + k. The s-month change in the futures price

for the same deliver month t+ k is given by,

∆spt,t+k = pt,t+k − pt−s,t+k, s = 1, ..., 4− k, k = 1, .., 3

I then regress VAR-identified oil supply shocks on changes in oil price futures for that

delivery month,

oilt = α + β∆spt−1,t + εt, s = 1, ..., 3.

That is, I test whether past changes in oil futures can forecast today’s oil supply shocks.

Table 1 reports the result for s = 1, ..., 3. In all cases the coefficient β is small and

insignificant. For example, in the first column a 1% increase in futures prices forecasts an

(insignificant) -0.0035 standard deviation negative oil supply shock. Overall, little of the

variation in oil supply shocks appears to be forecastable using changes in oil price futures.

A concern with this analysis is that time-variation in oil futures risk premia may swamp

any information about changes in expected prices. Baumeister and Kilian (2017) analyze a

wide range of term structure models to determine what combination of them generates the
15http://www.eia.gov/dnav/pet/pet_pri_fut_s1_d.htm
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Table 1 – Predictability of Oil Supply Shocks using Futures Prices

Dependent variable: Oil Supply Shock in the Following Month

Futures Price
Growth over past 1 month 2 months 3 months

(1) (2) (3)
Growth of Futures Price −0.0020 −0.0028 −0.0027

(0.0046) (0.0033) (0.0021)
R2 0.001 0.003 0.004
Observations 367 387 365
Notes: The dependent variable is the oil supply shock in the following month. The independent variables
is the log change in the crude oil futures price over the past s months for crude oil delivery next month.
Newey-West standard errors with 12-month bandwidth in parenthesis. + p < 0.1, ∗ p < 0.05, ∗ p < 0.01.

smallest mean square predictor error for oil price forecasts. They conclude that the Hamilton

and Wu (2014) term structure model does best, and they provide the corresponding oil price

forecasts at horizons of 3, 6, 9 and 12 months ahead from 1992 onwards. I construct the

forecast revisions as before, but with the three-month ahead forecast as a baseline (rather

than the one-month ahead),

∆spt,t+k = pt,t+k − pt−s,t+k, s = 3, 6, 9, k = 3

and the corresponding regression is

oilt = α + β∆spt−1,t+2 + εt, s = 3, 6, 9.

Table 2 reports these results. Again the coefficient β is small and insignificant in all

cases.

Overall, these for both futures and risk-adjusted prices suggests that oil supply shocks I

identify are unlikely to be confounded by anticipated demand shocks.
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Table 2 – Predictability of Oil Supply Shocks using Baumeister and Kilian (2017) Oil Price
Expectations

Dependent variable: Oil Supply Shock in the Following Month

Expected Price
Growth over past 4 months 6 months 9 months

(1) (2) (3)
Growth of Expected Price −0.0012 −0.0021 −0.0015

(0.0030) (0.0018) (0.0016)
R2 0.001 0.005 0.003
Observations 281 278 275
Notes: The dependent variable is the oil supply shock in the following month. The independent variables
is the log change in Baumeister and Kilian (2017) expected oil price over the past s months for crude oil
delivery in three months. Newey-West standard errors with 12-month bandwidth in parenthesis. + p < 0.1,
∗ p < 0.05, ∗ p < 0.01.
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