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Abstract

We propose a novel mechanism, “financial dampening,” whereby loan retrenchment
by banks attenuates the effectiveness of monetary policy. The theory unifies an endoge-
nous supply of illiquid local loans and risk-sharing among subsidiaries of bank holding
companies (BHCs). We derive an IV-strategy that separates supply driven loan re-
trenchment from local loan demand by exploiting linkages through BHC-internal capital
markets across spatially separate BHC member-banks. We estimate that retrenching
banks increase loan supply substantially less in response to exogenous monetary policy
rate reductions. This relative decline has persistent effects on local employment and
thus provides a rationale for slow recoveries from financial distress.
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1 Introduction

Monetary policy responded aggressively to the fallout caused by the 2008 financial crisis

by cutting the Federal Funds rate all the way to zero, issuing forward guidance and conduct-

ing large-scale asset purchases. Yet despite these large and unprecedented policy actions,

the recovery from the Great Recession has been slow. This seemed to support the hypoth-

esis that in the aftermath of financial crises, recoveries are typically sluggish. The basis of

this “financial crises recoveries are different” hypothesis is typically cross-country empirical

evidence as in Reinhart and Rogoff (2014) and Cerra and Saxena (2008). Yet, we currently

lack a clear conceptual or empirical understanding of the mechanisms that might render

recoveries after financial distress different from other recoveries.

We propose a novel mechanism that dampens the potency of monetary policy, particu-

larly after financial crises. We focus on the phenomenon of loan retrenchment, commonly

associated with financial distress, whereby banks seek to systematically reduce their expo-

sure to non-tradable loan risks. We define non-tradable risks as any risk that a bank cannot

hedge against using traded financial instruments.1 We build on Froot and Stein (1998),

which provides a unified framework on risk management and capital structure in financial

institutions. In our micro-founded model, loan retrenchment combined with loan liquidation

costs reduces the pass-through from monetary policy rate changes to loan supply, which

attenuates the effectiveness of monetary policy.

To build intuition, consider the case were bank loans are completely illiquid, so retrench-

ing banks cannot actively reduce their loan portfolio. Thus, their loan exposure is above

their target loan exposure. A reduction in the monetary policy rate does increase the target

loan exposure of these banks, but so long as it is below the actual loan exposure no new loans

will be forthcoming. By contrast, a bank that does not retrench will increase loan supply

1In particular, some types of lending, such as loans to small businesses might be highly reliant on soft
information that cannot be easily summarized by measures such as credit ratings and would therefore face
severe illiquidity, when securitized. Additionally, these types of loans might also require continuous moni-
toring to perform well. Consequently, any counterparty that might provide for example credit-default swaps
would risk to undermine monitoring efforts by the loan-originating bank.
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since its target loan exposure increased. The same logic also applies to monetary policy rate

increases: a retrenching bank cannot reduce its loan exposure due to loan illiquidity, damp-

ening the impact of monetary policy on loan supply, whereas an expanding bank can reduce

new loan issuance. Thus, the degree of loan retrenchment is a state variable influencing the

effectiveness of monetary policy rate reductions, a mechanism we call “financial dampening.”

We empirically investigate how financial dampening mitigates the transmission of mon-

etary policy shocks on local lending. Like much of the empirical literature on financial

frictions, we face an identification challenge since local loan volumes could be driven by local

loan demand shocks, rather than changes in loan supply. To understand how to overcome

this identification problem, we incorporate it into our model: a low sensitivity of loan quan-

tities to monetary policy shocks can occur either because of supply driven loan retrenchment

or constrained local loan demand. Simple OLS estimates therefore do not correctly uncover

financial dampening.

To show how our spatial IV-strategy can overcome this identification problem, our model

also incorporates two previously documented features of U.S. banking. First, U.S. banking

is very local as emphasized by Becker (2007). We independently document this local nature

by showing that more than 50% of commercial banks essentially operate only in one county,

65% only in one metropolitan area, and over 95% only in one state. Second, commercial

banks are typically part of larger financial conglomerates or bank holding companies (BHC).

Furthermore, BHCs do not only own commercial banks from several distinct areas, but BHC-

member banks share a single internal capital market (Houston, James, and Marcus, 1997;

Campello, 2002). In the model, local banks use this internal capital market to insure against

non-tradable risks from illiquid local loans.

These features imply that an increase in the BHC’s internal capital cost imparts a com-

mon force for supply driven loan retrenchment across all BHC-member banks, since now

insurance against non-tradable risks becomes more expensive. Further, geographically sep-

arate BHC-member banks are not subject to the same local demand constraints. Thus,
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average loan retrenchment at spatially separate BHC-member banks can be used as an in-

strument for local loan retrenchment. We show that if banks are small and demand shocks

are spatially uncorrelated, then our instrument can consistently estimate the importance of

supply driven financial dampening.

We derive the empirical specification for our IV strategy from the model and estimate

results consistent with our theory: in response to a -1% monetary policy shock, a bank at the

25th percentile of the loan growth distribution increases its loan growth by 3.25 percentage

points less than a bank at the 75th percentile according to our baseline specification. These

cross-sectional effects are quantitatively large and comparable to the size and liquidity effects

identified by Kashyap and Stein (1995, 2000).

We provide a battery of robustness checks to validate the exclusion restriction and address

several potential threats to identification. First, we control for loan demand at other local

banks and for local house prices. Second, to address concerns about spatially correlated

demand shocks we exclude banks from the instrument that are closely located in the same

MSA or State. Third, we exclude banks with a sizable loan share within the BHC that could

create causality from local demand shocks to the instrument. In each case our results are

quantitatively similar or strengthen.

Next, we address identification threats stemming from bank portfolio specialization.

First, BHCs may select into areas with specific industrial compositions that differ in their

sensitivity to a monetary shock, in which case a monetary policy shock can generate differ-

ential loan demand shocks across BHC. We account for this issue by controlling for local

industry composition. Second, BHCs might select into certain types of lending within each

area, such as small business lending. If loan demand at small business is more sensitive to

monetary policy this can threaten identification. We therefore include several bank portfolio

controls, including the extent of small business lending and balance sheet liquidity. Again

these controls result in quantitatively similar or stronger estimates.

Finally, we show that our results are distinct from other well-known determinants of

3



the bank lending channel, such as bank liquidity (Kashyap and Stein, 2000), banks size

(Kashyap and Stein, 1995), the level of leverage (Bernanke, Gertler, and Gilchrist, 1999),

regulatory capital constraints (Van den Heuvel, 2005), and capital growth which can capture

profitability or bank-specific weaknesses.

We then show that employment growth responds significantly less to monetary policy in

counties with banks subject to supply-driven loan retrenchment. The employment effects

of monetary policy are 0.52 percentage points lower after two years for counties at the 25th

percentile of the loan growth distribution compared to the median county. Assuming that the

median county corresponds to aggregate employment effects, this renders monetary policy

only half as effective at stimulating employment growth in counties at the 25th percentile.

This suggests that financial dampening may be important mechanism for the real economy,

and an empirically supported mechanism for why recoveries after financial distress may be

slow.

This paper relates to at least four strands of literature. First, it emphasizes the role

of financial intermediation in the propagation of monetary shocks, as in Kashyap and Stein

(1995, 2000), Campello (2002), and Landier, Sraer, and Thesmar (2015), among many others.

Relative to the existing literature we propose a novel mechanism—financial dampening—

that affects the strength of this “bank lending channel.” Van den Heuvel (2005) emphasizes

state-contingency of the credit channel when the level of leverage is close to the regulatory

maximum. Our mechanism instead emphasizes the desired change in loan holdings, which

is not dependent on being close to a capital requirement. Our study is also related to

recent empirical work on the monetary transmission mechanism for Quantitative Easing

(QE) operations as opposed to conventional policy rate changes. In particular, Luck and

Zimmermann (2018) argue that large-scale asset purchases during QE1 and QE3 increased

loan supply the most at banks with a high exposure to mortgage-backed securities (MBS).

Their findings can be understood as mirroring our financial dampening mechanism, since in

their work, central bank policies are targeted at the most distorted banks are most successful
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at expanding loan supply. In contrast, since the conventional monetary policy changes we

analyze do not target the allocation of BHC internal capital markets, policy rate changes

are least effective at local banks that are most affected by BHC-level capital scarcity.

Second, our work is related to the empirical work on the link between financial shocks and

real economic outcomes (e.g., Peek and Rosengren, 2000; Chodorow-Reich, 2014; Bassett,

Chosak, Driscoll, and Zakrajšek, 2014; Amiti and Weinstein, 2018). Using lenders operating

in multiple geographic areas to control for local loan demand is similar is spirit to Peek and

Rosengren (2000); Greenstone, Mas, and Nguyen (2017); Amiti and Weinstein (2018), and

Mondragon (2018). These papers are either event studies of natural experiments or rely on

annual variation. By contrast, we construct a quarterly panel dataset of lenders, which is

better suited to analyze the impact of financial dampening on monetary policy transmission

at business cycle frequencies.

Third, our work shows that commercial banks may fail to increase loan growth, even if

monetary policy reduces funding costs by lowering monetary policy rates. This suggests that

financial dampening may be an important ingredient for quantitative business cycle models

with financial frictions (e.g., Bernanke et al., 1999; Gertler and Karadi, 2011; Cúrdia and

Woodford, 2016). In these models, the effectiveness of monetary policy is increasing in the

level of leverage, whereas the financial dampening mechanism emphasizes the desired change

in financial sector loan holdings. Thus, even if current leverage is high, as in the most recent

recession (He, Khang, and Krishnamurthy, 2010; Ang, Gorovyy, and Van Inwegen, 2011),

the effectiveness of monetary policy can be attenuated by the desire of the financial sector

to retrench. This implies that the effectiveness of monetary policy is likely contingent on the

state of the financial sector. Existing work has instead emphasized differential effectiveness

based on firm balance sheets (Gertler and Gilchrist, 1994), based on whether the economy is

in a recessions and expansions (e.g., Angrist, Jordà, and Kuersteiner, 2018; Barnichon and

Matthes, 2015; Tenreyro and Thwaites, 2016), or based on uncertainty (Vavra, 2014).

Fourth, our work is related to studies analyzing how internal capital markets shape
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investment choices (Stein, 1997; Scharfstein and Stein, 2000). Houston et al. (1997) and

Campello (2002) also focus on how internal capital markets shape lending behavior at BHCs,

but they proxy for financial constraints using cash-flow sensitivities whereas we derive an

IV-strategy to estimate loan supply as a function of scarcity in the internal capital market.

Our model builds on Froot and Stein’s integrated view of capital budgeting and loan risk

management.2 Consistent with the model, Begenau, Piazzesi, and Schneider (2015) find

that loan risk is not hedged with BHC-level derivative positions and Cebenoyan and Strahan

(2004) show that the subset of banks actively selling loans hold systematically less capital

than other banks.

2 Model

2.1 Overview Our model is an extended version of the seminal analysis of Froot and Stein

(1998), which provides a unified treatment of risk management and capital structure choice

for financial institutions. We extend their framework in three ways to align the model with

our specific empirical application.

First, bank loans are illiquid and subject to non-linear liquidation costs. This implies

that the interest rate elasticity of loan supply will depend on the bank’s existing exposure

to non-tradable loan risk relative to the bank’s desired risk. This new ingredient allows

us to formalize financial dampening. Second, we allow for unobservable changes in local

loan demand that can potentially affect the responsiveness of banks to monetary policy, and

thereby complicate identification of a supply-driven financial dampening channel. A third,

more incremental, extension of Froot and Stein (1998) is that we model the behavior of local

BHC subsidiaries, which are connected through a BHC internal capital market. This allows

us to derive our estimation equation and IV-strategy directly from our model.
2Rampini and Viswanathan (2010) provide an alternative framework where collateralization constraints

connect capital budgeting and risk management to net wealth. We conjecture that our results can be recast
in that framework with BHC-collateral constraints taking the role of the BHC-level capital cost in our
framework. However, even such a model would need loan liquidation costs to generate financial dampening
effects discussed here.
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2.2 Economic Environment and Timing Our exposition closely follows Froot and Stein

(1998). Let i ∈ Ωh index a local bank that is part of a bank holding company h. We assume

that each bank i is a small part of the BHC and each bank operates on a separate island.

The bank has a choice of investing in illiquid, risky loans Li,h or in liquid, safe securities Si,h.

These investments are in turn funded by an exogenously given local deposit base D̃i,h and

capital provided by the BHC, denoted Ki,h. The balance sheet is therefore

Li,h + Si,h = D̃i,h +Ki,h (1)

The model has two subperiods. In period 1, local banks start with a given deposit base

D̃i,h and a given past loan portfolio Li,h,0. Local banks decide how much to invest in loans

and safe securities Li,h and Si,h, while at the same time deciding how much capital Ki,h to

demand from the BHC internal capital market. Safe securities Si,h and deposits D̃i,h pay

the same safe return rF , while loans Li,h pay a random return rL ∼ N(r̄L, σ2
ε).3

We assume that banks’ loan portfolio risks are non-tradable. This assumption can be

relaxed following Froot and Stein (1998), in which banks optimally hedge all tradable risks

away so that only non-tradable risks remain on the balance sheet. Begenau et al. (2015)

provide evidence for the existence of non-tradable loan risk on balance sheets of local banks

in call report data.

Since our model focuses on non-tradable loan portfolio risks, loans are subject to quadratic

liquidation costs. To liquidate x ∗ 100 percent of its initial loan portfolio, the bank has to

pay a cost Ψ(x)Li,h,0 = ψ
2
x2I {x < 0}Li,h,0 as in Stein (1998), where I{•} is an indicator

function. Similar assumptions are typical in the literature (e.g., Diamond and Dybvig, 1983;

Kashyap and Stein, 1995; Bianchi and Bigio, 2018).4 Thus, the liquidation cost is,

Ψ

(
∆Li,h
Li,h,0

)
Li,h,0 =

ψ

2

(
∆Li,h
Li,h,0

)2

I
{

∆Li,h
Li,h,0

< 0

}
Li,h,0. (2)

3We can let deposit rates differ from the safe rate without affecting our derivations.
4Among others, Diamond (1984), Holmstrom and Tirole (1997), and Afonso and Lagos (2012) provide

micro-founded mechanism for loan illiquidity.
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Following Froot, Scharfstein, and Stein (1993) and Froot and Stein (1998), banks use

their period 1 cash flows to invest in a non-stochastic investment opportunity. As Froot and

Stein (1998), we assume that the payoff is given by the concave function,5

P (w) = Aw +B

(
1− 1

g
e−gw

)
(3)

where A,B > 0, so that the marginal payoff of cash flows is always positive but decreasing.

We also restrict A ≤ 1, so that the demand for BHC-capital Ki,h is always finite. This

functional form implies decreasing risk aversion, so that banks with larger values of cash

flows wi will exhibit more risk-seeking behavior. For low values of wi, the bank will exhibit

risk aversion with an coefficient of absolute risk aversion g, while for large values of wi, the

bank will be risk-neutral.

After these returns are realized, banks pay capital back to the BHC, at a BHC specific

capital rate (1 + rh) = (1 + θh)(1 + rF ), where the BHC-premium θh is strictly positive

and exogenous to the bank. This premium can be thought of as being determined by a

potentially time-varying external financing costs for the BHC.

Two features of the set-up are particularly important. First, the curvature from P (•)

creates risk aversion in banks, as low realizations of wi,h imply high marginal returns P ′(wi,h),

and vice versa. Second, since capital from the BHC, Ki,h, are part of cash flows wi,h, it acts

as insurance against low loan returns. The higher the capital cushion Ki,h, the more the

bank is protected against low loan return realizations, and the less risk averse the bank will

be. This creates a positive demand for BHC-level capital despite its costly premium θh > 0.

2.3 Payoffs The final payoff in period 2 is the return from the investment opportunity

P (wi,h) net of equity repayment, V (wi,h, Ki,h) = P (wi,h)− (1 + rh)Ki,h.

As the return on loans, rL, is a random variable, banks in period 1 optimally choose

5In Froot and Stein (1998), the bank is also able to raise additional equity at this stage, subject to a
convex equity cost. We leave it out for simplicity since it does not affect our derivations.
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loans Li,h and capital Ki,h to maximize expected utility:

max
Li,h,Ki,h

E[V (wi,h, Ki,h)]

s.t. wi,h = (rL − rF )Li,h + (1 + rF )Ki,h −Ψ(∆Li,h/Li,h,0)Li,h,0

rL = r̄L + ε, ε ∼ N(0, σ2
ε)

where we substituted for the bank balance sheet (1). Banks take all interest rates and returns

as given.

Proposition 1 The optimal loan supply is given by

LS∗i,h =
r̄L − rF −Ψ′(∆LS∗i,h/Li,h,0)

Gh · σ2
ε

(4)

where the absolute risk aversion coefficient is

Gh =
g(1− A+ θh)

1 + θh
> 0 (5)

Proof See appendix A.1.

The numerator in (4) is the expected excess return, which consists of the expected loan

premium and the marginal liquidation cost Ψ′ (which may be zero). The denominator is the

BHC-specific absolute risk aversion Gh and the variance of loan returns.

A key result from this proposition is that bank risk aversion is determined by the BHC-

level cost of capital. Intuitively, a low premium θh increases capital cushion Ki,h, which

increases cash wi,h carried into period 2 for the non-stochastic investment opportunity. Since

that investment opportunity is concave, variations in wi,h are less costly at higher levels of

the capital cusion Ki,h. Thus, the bank becomes less risk averse the higher the capital on

its books. Conversely, the higher the premium, the less capital the bank demands and the

greater its risk aversion,

∂G

∂θh
=

g · A
(1 + θh)2

> 0
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We assume that the econometrician observes loan supply only with measurement error,

LSi,h = LS∗i,h + εLi,h,0. The measurement error ε ⊥⊥ LS∗i,h is bank-specific and scales with bank

size Li,h,0. The average loan supply Eε[LS∗i,h|LSi,h] is then equal to,

Eε[L
S∗
i,h|LSi,h] =

r̄L − rF − Φ′(∆LSi,h/Li,h,0)

Gh · σ2
ε

(6)

where

Φ′

(
∆LSi,h
Li,h,0

)
≡ Eε

[
∂Ψ(∆LS∗i,h/Li,h,0)

∂∆LS∗i,h/Li,h,0

∣∣∣∣∣ ∆LSi,h
Li,h,0

]

Incorporating measurement error through the random variable ε smooths out the marginal

liquidation costs. We gain the existence of a third derivative at 0, which later allows us to

linearize at that point and derive a linear estimation equation for the financial dampening

effect.6 In what follows, we assume a uniform distribution for ε, ε ∼ U [−a, a]. In appendix

B we show that the marginal liquidation cost then has the properties Φ′(0) < 0, Φ′′(0) > 0

and Φ′′′(0) < 0.

2.4 Optimal loan supply: responsiveness We next characterize the response of mea-

sured loan supply to monetary policy changes. We interpret monetary policy shocks as

exogenous changes in the safe interest rate rF .7

To ensure that changes in rF affect loan supply, we assume that there is imperfect pass

through to the expected loan return ∂r̄L

∂rF
= µ < 1.8 Incomplete pass-through is consistent

6Alternatively, we could use the fact that a banks gross changes in asset positions typically exceed net
changes in asset positions, due to the take-up of commitments and the payment of existing loans. Thus,
even banks with positive net changes in total loans would be subject to loan liquidation costs because of
some gross liquidations. In that set-up ε would reflect the imperfect mapping from net total loan changes
to gross liquidations.

7If one interprets the safe asset as Federal Funds, then the transmission is direct and one-for-one. More
generally, the empirical literature on the term structure of interest rates has shown that short term interest
rates respond strongly to changes in the Federal Funds rate, see Cook and Hahn (1989) and Kuttner (2001).
If one instead focuses on the funding costs of banks, then the federal funds rate directly influences the
interbank loan rate, and (through arbitrage) loan rates on close substitutes, such as money market funds
and deposits (Bianchi and Bigio, 2018).

8Alternatively, endogenous changes in loan risk, ∂ lnσ2

∂rF
> 0, achieve the same outcome.
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with the data (Fuster, Goodman, Lucca, Madar, Molloy, and Willen, 2013; Scharfstein and

Sunderam, 2016) and, in the model, provides a mechanism for increases in loan supply fol-

lowing a reduction in monetary policy rates. Theoretically, this assumption can be motivated

by adverse selection considerations as in Stiglitz and Weiss (1981), in which increases in loan

rates induce a selection of bad risks into the loan portfolio of banks and vice-versa.

Proposition 2 The response of loan supply to exogenous changes in the risk-free rate is

approximately given by

∂ lnLSi,h
∂rF

≈ − 1− µ
r̄L − rF + Φ′′(0)

+
(1− µ)Φ′′′(0)

[r̄L − rF + Φ′′(0)]2
ln

(
LSi,h
Li,h,0

)
(7)

Proof See appendix A.2.

Proposition 2 captures the financial dampening mechanism that we try to measure. Ac-

cording to equation (7), banks that are in the process of reducing their risk-exposure to

loans LSi,h < Li,h,0 respond less to exogenous changes changes in monetary policy when loan

liquidation costs are asymmetric, Φ′′′(0) < 0. Thus, banks will expand loans less to policy

rate reductions, as well as contract loans less in response to policy rate increases.

To understand the mechanism, consider the extreme case where banks cannot liquidate

loans, so the marginal liquidation cost is infinite. Then banks that would want to contract

loan supply (absent liquidations costs) to LSi,h < Li,h,0, will simply keep their current loan

portfolio LSi,h = Li,h,0. A reduction in policy rates does raise the ideal loan supply LSi,h, but no

new loans will be forthcoming so long as the ideal loan supply remains less than the original

loan portfolio. The loan portfolio will be stuck at Li,h,0 and the monetary transmission

mechanism through bank lending is completely dampened. By contrast, a bank that does

not want to liquidate loans is not subject to these liquidation costs and will increase loan

supply. For finite marginal liquidation costs the loan supply response at retrenching banks

is positive but dampened relative to banks not retrenching. Hence, we call this mechanism

“financial dampening.”

The mechanism applies equally to monetary policy rate decreases and increases. In
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the case where liquidation cost is infinite, a retrenching bank cannot further reduce its

loan supply following an increase in the safe rate rF . But a bank that already plans to

increase loan supply can simply chose to do so less. While financial dampening does apply

symmetrically, in what follows we will focus on the intuition for interest rate decreases.

2.5 Local loan demand Because loan supply is not directly observable, we cannot estimate

equation (7). This creates an identification problem because realized loan volumes can be

driven by either supply or demand. We formalize this idea as follows. Local markets may be

subject to constrained loan demand, which captures variations in investment opportunities.

Denote Lci,h as maximum possible loan demand in the location of bank i. Realized loan

volumes are then given by

lnLi,h = lnLSi,h + xi,h · (lnLci,h − lnLSi,h)

where xi,h = I{lnLci,h < lnLSi,h} is an indicator of whether a bank is constrained by local

loan demand. In this demand-constrained case, there is no response of loan quantities to

monetary policy. Thus, while reduced-form, this demand equation captures the key concern

that weak loan quantity responses may come from the demand-side rather than the supply

side.

We assume that banks are small relative to their local area, so that variation in local

loan demand, lnLci,h, determines whether the loan demand constraint xi,h binds, instead of

changes in target loan supply moving a bank into a constraint. As a consequence LSi,h and

xi,h are independent random variables. As we discuss below, a violation of this assumption

creates a bias against us in our IV strategy.

2.6 Endogeneity problem The simplest version of our main estimation equation can be

written as

∂ lnLi,h
∂rF

= α + β∆ lnLi,h + ui,h (8)
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where

α = − 1− µ
r̄L − rF + Φ′′(0)

(9)

β =
(1− µ)Φ′′′(0)

[r̄L − rF + Φ′′(0)]2
(10)

ui,h = xi,h (−α− β ×∆ lnLi,h) (11)

∆ lnLi,h = ∆ lnLSi,h + xi,h
(
∆ lnLci,h −∆ lnLSi,h

)
(12)

The resulting OLS regression would therefore be a regression of loan growth at bank i,

∂ lnLi,h, on interest rate shocks ∂rF and the interaction of interest rate shocks ∂rF with

lagged changes in loan growth. The problem is that even under the small bank assumption,

unobserved variation in local loan demand will affect both local loan volumes (12) and the

error term (11) through the constraint indicator xi,h. Thus, even if β = 0, the OLS estimate

is biased towards finding evidence for financial dampening, E[β̂OLS] < 0.9 Intuitively, the

OLS estimate also reflects that demand-constrained areas have low loan growth and low

sensitivity of loan growth to changes in monetary policy rates.

2.7 Instrumental Variables Strategy To illustrate our instrumental variable strategy,

we focus on variation in the in BHC specific costs of capital θh. It creates common variation

in loan supply across all BHC member banks through the BHC-internal capital market,

∆ lnLSi,h = −G
h′

Gh
dθh

Based on this common variation, we construct loan growth of BHC banks that are “else-

where”, i.e., not in the same location as bank i. This is defined as

∆ lnL−i,h =
1

N

∑
j 6=i

∆ lnLj,h

= (1− x̄)∆ lnLSi,h + xj,h∆ lnLcj,h

9Formally, if β = 0, then Cov(∆ lnLi,h, ui,h) = −αCov(∆ lnLi,h, xi,h) < 0 yielding a downward bias.
When β < 0 then the bias can be either downward or upward, and, empirically, we find an upward bias.
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where a bar over a variable denotes a cross-sectional average across all banks in BHC locations

other than bank i. Elsewhere loan growth captures the common variation in BHC level risk

premium θh, up to scale.10 It also captures the (unobserved) fraction of BHC member banks

that is under loan demand constraints x̄, so we cannot directly infer changes in optimal loan

supply from loan growth of BHC member banks “elsewhere.” However, an advantage of IV

estimation is that we do not need this information. We only need the instrument to be

correlated with the local loan supply and uncorrelated with local loan demand constraints.

Proposition 3 If all banks are small in their local area and local loan demand shocks are

uncorrelated across banks of the same BHC, then loan growth at other banks within the same

BHC, ∆ lnL−i,h is uncorrelated with the error term ui,h in estimating equation (8). Therefore

the IV estimator

β̂IV =
Cov

(
∂ lnLi,h

∂rF
,∆ lnL−i,h

)
Cov (∆ lnLi,h,∆ lnL−i,h)

is consistent, and recovers the parameter β in (8).

Proof See appendix A.3.

We note that our IV-strategy identifies the parameter of interest even if loan retrenchment

is not exogenous at the BHC level as we assumed above. For our purposes, it suffices that

BHC level variation is not correlated with local demand conditions, conditional on controls we

add to equation (8). In that sense, the source of variation at the BHC level is not important:

any variation in BHC-level loan retrenchment that satisfies the exclusion restriction for the

local banks, such as a higher BHC cost of capital, greater BHC risk aversion etc., will identify

the structural parameter β.

Thus, our IV-strategy can overcome the identification problem and recover the impor-

tance of supply driven financial dampening. In our empirical analysis we will pay particular

10Our identification strategy does require that BHC capital costs get passed through perfectly to local
banks. For example, distortions in the BHC internal capital markets could lead to an incomplete pass-through
of BHC capital costs to local banks (Scharfstein and Stein, 2000; Rajan, Servaes, and Zingales, 2000). This
would weaken our instrument because loan growth at other BHC-member banks is less informative about
capital costs at the local bank, but it would not violate the exclusion restriction.
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attention that our results are not driven by correlated shocks across banks. The small bank

assumption is less critical because violations of it create a bias against us. In particular, if it

is violated, then banks with high loan growth are more likely to be demand-constrained, and

then those banks will also exhibit weaker reactions to monetary policy shocks. By contrast,

the financial dampening mechanism implies that banks with low loan growth will exhibit

weaker sensitivity.11

3 Data

Our identification strategy requires knowledge of which BHCs own which banks, the

amount of loans made by banks, and in which local area a given bank operates. In brief,

we use the bank call report data to determine how many loans a bank has made and which

BHC owns the bank. This knowledge allows us to determine the ownership structure of

banks across BHCs. We use the location of physical branches of a bank to determine the

area in which a given bank makes loans.

For example, the bank New York Commercial Bank is owned by the multi-bank BHC

New York Community Bancorp. The call reports tell us how many loans New York Com-

mercial Bank has made. New York Commercial Bank also operates 30 physical branches in

metropolitan New York (but not elsewhere). We therefore assume that New York Commer-

cial Bank only makes loans in the New York metropolitan area.

Bank level data We use the Report of Condition and Income data available from the

Federal Reserve Bank of Chicago and WRDS. It captures all commercial banks regulated by

the Federal Reserve System, the Federal Deposit Insurance Corporation and the Comptroller

of the Currency. The data are at a quarterly frequency from 1976 to 2010. This dataset has

11Formally, the covariance between the instrument and the error term is positive, Cov(∆ lnL−i,h, ui,h) =
−α(1 − x̄)Cov(∆ lnLSi,h, xi,h) > 0, since absent the small bank assumption higher loan supply makes the
constrained regime more likely, Cov(∆ lnLSi,h, xi,h) > 0. This generates an upward bias in the IV estimate.
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Table 1 – Consistency of Commercial Bank Balance Sheets with BHC Consolidated State-
ments

1 5 10 25 50 75 90 95 99 N∑
Bank Assets

BHC Assets 0.63 0.95 0.98 0.99 1.00 1.00 1.00 1.01 1.07 136370∑
Bank Loans

BHC Loans 0.65 0.97 1.00 1 1 1 1.00 1.00 1.06 136369∑
Bank Capital

BHC Capital 0.39 0.77 0.85 0.95 1.00 1.17 1.41 1.63 2.54 136370
Notes: Balance sheet variables of matched commercial banks are aggregated and divided by the correspond-
ing variables in the BHC reports. A value of 1 indicates a perfect match. Data is at the BHC-quarter level.
Source: Report of Condition and Income, BHC consolidated statements, and authors’ calculations.

been previously used by Kashyap and Stein (2000) and Campello (2002) among others.12 Our

sample begins in 1986 onwards when the BHC consolidated statements are also available.

We further restrict our analysis to banks whose head office is insured by either the FDIC,

the National Credit Union Savings Insurance Fund, and/or its resident state. This removes

U.S. branches of foreign banks as well as domestic national trusts. Whenever a bank merger

occurs, we treat the resulting entity as a new bank. We identify mergers using the bank

merger files available from the Federal Reserve Bank of Chicago website.

We match commercial banks to bank-holding-companies (BHCs) using the regulatory

high-holder identifier (RSSD9348). We first check if the commercial bank regulatory data

consistently aggregate, by comparing them with the BHC consolidated statements. In table

1 we document the ratio of total commercial bank assets, loans and capital at a BHC to the

BHC-reported total assets, loans and capital. For most BHC-quarter observation that ratio

is close to 1 for assets and loans, implying that the commercial bank data are consistent

with the BHC data. The match is worse on bank and BHC book capital.

In table 2 we compare size and leverage of unmatched commercial banks (not part of

a BHC) with those of matched banks. Among matched commercial banks we further dis-

tinguish between those that are the sole member of a BHC and those that are part of a

multi-bank BHC. We find that unmatched and sole-member banks are both significantly

smaller on average than commercial banks in multi-bank BHCs. Since our estimation strat-

12Goetz, Laeven, and Levine (2013) also exploit the geographic dispersion of banks to examine how mergers
of geographically separate banks affect the riskiness of a BHC. Unlike us, they use the headquarter state to
assign banks to locations.
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Table 2 – Average Bank Size and Leverage Comparison by BHC Membership
Assets Loans Leverage Obs.

Matched banks (1 bank in BHC) 235885.0 150858.7 11.3 582853
Matched banks (>1 bank in BHC) 1885055.7 1032120.6 11.9 390644
Unmatched banks 480872.0 192450.6 10.6 702425
Notes: Average across banks for assets, loans and leverage by category. “Obs.” denotes the total number
of observations in the asset category. Categories are banks not matched to a BHC (unmatched), banks that
are the only member of a BHC (1 bank in BHC), and banks that are part of a multi-bank BHC (>1 bank
in BHC). Observations are at the bank-quarter level. Source: Report of Condition and Income and authors’
calculations.

egy requires the presence of at least two banks in a BHC, we invariably select on banks that

are larger than average.

We merge these data with the FDIC’s Summary of Deposit survey. This dataset reports

branch-level deposits as of June 30th for all FDIC-insured institutions since 1994. It includes

member banks, non-member banks and thrifts, among others. We exploit the exact coding

of branch locations to determine a banks zone of operation. Let diblt be total deposits at

branch b of bank i in location l at time t. For each bank we calculate its total yearly deposits

in location l by summing over all local branches, dilt =
∑

b diblt. We consider four levels of

geographical aggregation l: counties, micro- or metropolitan statistical areas (mSA/MSA),

combined statistical areas (CSAs) and states. For each bank with at least one branch in

location l, we construct the share of its deposits in that area for a given year silt = dilt∑
l dilt

.

For counties that do not belong to mSA/MSAs we report the county deposit-share as part

of the mSA/MSA and CSA level. For mSA/MSAs that are not part of a CSA we report the

mSA/MSA share.

To illustrate the geographical concentration of banks we calculate the maximum deposit-

share over all locations for a given bank-year, smaxit = maxl silt. This gives us a single ob-

servation for each bank-year pair. Table 3 tabulates the percentiles of the smaxit -distribution.

Banking is already quite concentrated at the county level. Over half of our bank-year obser-

vations are located in a single county. Aggregating further we find that 65% of bank-years

are located in a single mSA/MSA, 70% in one CSA, and more than 95% in a single state.

This geographic concentration of banking activity is likely rooted in historical restrictions
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Table 3 – Distribution of Banks’ Maximum Share of Deposits across Locations
Percentile 0.1 1 5 10 25 40 50 N
County level 0.11 0.23 0.42 0.53 0.77 0.96 1.00 195531
MSA level 0.15 0.28 0.49 0.60 0.87 1.00 1.00 195529
CSA level 0.17 0.30 0.51 0.64 0.93 1.00 1.00 195529
State level 0.34 0.66 1.00 1.00 1.00 1.00 1.00 195524
Notes: Observations are at the bank-year and calculated separately for each location level. Source: FDIC
Summary of Deposit and authors’ calculations.

on interstate banking due to the National Bank Act of 1863 and the McFadden Act of 1927,

which substantially curtailed geographic diversification of banks. These restrictions were

then gradually lifted during the 1980s and 1990s resulting in the deregulation of interstate

banking studied in Goetz et al. (2013).

We exploit this geographical concentration to match banks to locations. Our baseline

rule is to assign banks to the smallest level of geographical aggregation such that 95% of

all bank deposits are located within that area. For instance, a bank that is equally spread

over 3 counties belonging to a single MSA, will be assigned to the MSA where it has 100%

market share. We do not assign a location to banks that straddle state borders if it has less

than 95% market share in a single state. We view our 95% rule as a sensible benchmark

to capture essentially all major operations of a bank, while still allowing for minor presence

elsewhere. In a robustness check we use a more conservative 100% threshold.

If a bank changes location (its deposit share drops below 95%), we do not assign a location

to it throughout the sample. Thus, our definition of a location is a fixed attribute. For all

banks present in 1994 we then backcast location to the beginning of the sample in 1986. A

drawback is that we cannot assign a location to any bank that ceases to exist before 1994.

These location assignments are only sensible if banks also lend primarily where they

have branches. While our data do not speak directly to this assumption, the local nature

of commercial banking has been documented elsewhere. Brevoort, Holmes, and Wolken

(2009) show that the median distance between a small business and a branch of its primary

lender is between 3-4 miles. Further, more than 80% of a commercial banks’ loans are made

within a 30-mile radius even in the mid-2000s. Becker (2007) documents that cities with
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a demographically induced high deposit supply also tend to have high local loan volumes.

Nguyen (2019) also documents that the closing of a branch causes significant disruptions in

local credit supply. This suggests that our location assignments capture a significant part of

the banks area of operation.

In short, we obtain a set of commercial banks that operate in different locations but

are owned by the same BHC. We use this spatial separation to construct our retrenchment

measure that is independent of local demand shocks. Let Liht be total loans at bank i

matched to BHC h at time t. Total BHC loans are Lht =
∑

i∈Ωh
Liht, where Ωh is the set of

banks in BHC h. We define total BHC assets that are spatially separate from location l of

bank i (“elsewhere loans”) as,

L−l,ht =
∑
k∈Ωh

LkhtI{sklt < 0.05} (13)

where I{sklt < 0.05} is an indicator that bank k in BHC h has fewer than 5% of its deposits

in location l. This indicator is a substantive-presence test. We classify a bank’s loans as

essentially independent of local demand shocks in area l if its deposit share in l is sufficiently

small—less than 5%. Note that this automatically excludes bank i, which has at least 95%

of its deposits in location l. However, it can include national banks, so long as they only

have a minor (relative) presence in location l.

We then sum over all banks in the BHC that pass this test, which creates a measure

of total BHC level loans that are independent of shocks to area l. Our empirical strategy

is then to instrument the degree of bank-level loan retrenchment, measured by local loan

growth ∆ lnLiht, using elsewhere loan growth, ∆ lnL−l,ht. As a robustness check we use the

more stringent presence test that a bank has zero deposits in location l.

Our instrumental variable strategy requires that we assign a bank to location l and that

at least one other BHC-member bank does not operate in location l. Table 4 compares banks

for which we can and cannot implement this strategy. Compared with the sample of banks

in table 2 we still select among relatively large commercial banks, although we do drop some
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Table 4 – Average Balance Sheet Size of Banks in Multi-Bank BHCs.
Assets Loans Leverage Obs.

Geographically-separate bank in BHC 1186385.0 725140.7 11.6 142993
No geographically-separate bank in BHC 3650195.8 2018798.8 11.5 82896
Notes: Average size and leverage for banks in multi-bank BHCs where we can construct a retrenchment
measure excluding the current bank and average size and leverage for banks in multi-bank BHCs where we
cannot do so. Source: Report of Condition and Income, FDIC Summary of Deposit and authors’ calculations.

Table 5 – Commercial Bank Balance Sheets Summary Statistics

Mean SD 25
pctile Median 75

pctile Observations

Asset growth (one-quarter) 1.74 5.46 −1.04 1.19 3.72 87262
Loan growth (one-quarter) 2.23 6.25 −0.83 1.75 4.57 86834
Leverage growth (one-quarter) −0.096 7.77 −3.35 −0.43 2.77 87261
Loan growth (four-quarter) 9.68 17.6 0.92 7.31 14.8 86726
Elsewhere loan growth (four-quarter) 9.93 12.2 3.25 8.45 14.5 88027
Notes: Summary statistics for bank-level variables used in the baseline regressions. Elsewhere loan growth
is the loan growth at spatially-separate banks of the same BHC. Growth rates are log changes multiplied by
100. Growth rates in the top and bottom 0.5 percentile were dropped. Source: Report of Condition, FDIC
Summary of Deposit and Income and authors’ calculations.

of the largest banks in the sample. This is because we cannot assign national banks to a

single location.

Because the bank regulatory data are noisy we follow the existing literature (Kashyap

and Stein, 2000; Campello, 2002) and remove extreme growth rates. For all variables we

drop the top and bottom 0.5 percent of all observations. Table 5 tabulates cross-sectional

summary statistics for our key variables of interest: asset growth, loan growth, leverage

growth, and our instrument, the four-quarter growth rate of loans at BHC-member banks

located elsewhere.

Monetary Policy Shocks We use the Romer and Romer (2004) monetary policy shock

series (“Romer-shocks”). These are residuals from a regression of the federal funds rate

on lagged values and the Federal Reserve’s information set based on Greenbook forecasts.

As argued by Romer and Romer (2004) these are plausibly exogenous with respect to the

evolution of economic activity. We update the Romer-Romer shock series up to December
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2007.13 We sum the shocks to a quarterly frequency and merge them with the bank data.

The advantages of using a monetary shock relative to a time-series of nominal interest

rates are threefold. First, it provides a closer match the theory, where the safe interest rate

changes exogenously. Second, since monetary policy shocks are unanticipated, banks cannot

adjust their portfolio in anticipation of these shocks, which matches our theoretical set-up.

Third, endogenous changes in interest rates may be negatively correlated with BHC capital

premia θ or loan risks σ2
ε , so the total effect on loan supply is ambiguous, unlike for monetary

policy shocks.

4 Results

We add a lag structure to equation (8), which was found to be relevant in previous

bank-level studies (Kashyap and Stein, 1995; Landier et al., 2015; Van den Heuvel, 2012).

Hamilton (2008) argues that the lag structure reflects search frictions by prospective home

owners, which causes a delays a change in mortgage loans. We estimate equation (8) with 8

lags as well as controls for the level of leverage and the non-interacted elsewhere loan growth,

∆ lnLi,h,t =αi + γt +
8∑

k=0

βk∆rt−k∆
4 lnLi,h,t−1−k +

8∑
k=0

δk∆rt−kφi,h,t−1−k

+
8∑

k=0

θ1kφi,h,t−1−k +
8∑

k=0

θ2k∆
4 lnLi,h,t−1−k (14)

+
8∑

k=0

θ3k∆
4 lnL−l,h,t−1−k +

8∑
k=1

γ1k∆ lnLi,h,t−k + δ × controls + εit.

Given the lag structure, we instrument nine endogenous variables, {∆rt−k∆4 lnLi,h,t−1−k}k=0,...,8,

using nine instruments, {∆rt−k∆4 lnL−l,h,t−1−k}k=0,...,8.

Note that the timing here is analogous to equation (8) multiplied through by ∂rF ,

∂ lnLSi,h = α∂ lnLSi,h + β∆ lnLi,h∂r
f + vi,h. The latter characterizes the response of loan

growth ∂ lnLSi,h as a function of the interaction of an exogenous change in interest rates

13These data are publicly available at https://sites.google.com/site/johannesfwieland/Monetary_shocks.zip.
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∂rF and the pre-existing distance of loan supply from the initial loan supply ∆ lnLi,h. In

discrete time we adopt this timing by measuring the growth rate of loans ∂ lnLSi,h for the

time horizon t − 1 to t, while measuring the pre-existing distance of loan supply from the

initial loan supply ∆ lnLSi,h using loan volume changes from t− 2 to t− 1.

We further add time fixed-effects to absorb any correlation between the endogenous vari-

ables and instruments induced by aggregate business cycle variation (e.g., common demand

shocks). Also, we interact the contemporaneous monetary policy shock with lagged loan

growth. This implies that retrenching is pre-determined with respect to the monetary pol-

icy shock, which ensures that causality does not run from monetary policy to bank-level

retrenching.

The fourth term in equation (14) interacts the monetary policy shock with leverage. We

control for leverage to avoid conflating financial dampening with a standard financial ac-

celerator or the capital adequacy channel of Van den Heuvel (2005). The final two terms

control for bank-level dynamics in the dependent variable and other sources of bank-level

heterogeneity. For example, bank size has been shown to affect monetary policy responsive-

ness (Kashyap and Stein, 2000), and differential capital growth rates can capture differences

in bank profitability and its influence on responsiveness to monetary policy.
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Table 6 – First-stage estimates for bank deleveraging interacted with the monetary shock
Dependent variable: ∆rt−lag ∗ 4Q Loan Growtht−lag−1

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8
(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆rt ∗ 4Q BHC Loan Growtht−1 0.25∗∗∗ −0.003 −0.003 0.011∗∗ 0.015∗∗∗ −0.001 0.004 0.007 0.005
∆rt−1 ∗ 4Q BHC Loan Growtht−2 −0.003 0.26∗∗∗ −0.000 −0.008 0.009∗∗ 0.012∗∗ 0.001 0.005 0.006
∆rt−2 ∗ 4Q BHC Loan Growtht−3 0.000 −0.002 0.27∗∗∗ 0.006 0.001 0.003 0.017∗∗∗ −0.000 0.010∗
∆rt−3 ∗ 4Q BHC Loan Growtht−4 −0.005 −0.001 −0.00096 0.28∗∗∗ 0.005 0.007 0.005 0.018∗∗∗ −0.005
∆rt−4 ∗ 4Q BHC Loan Growtht−5 0.018∗∗∗ −0.003 −0.001 −0.0004 0.28∗∗∗ −0.006 0.007 0.010∗ 0.018∗∗∗
∆rt−5 ∗ 4Q BHC Loan Growtht−6 0.006 0.013∗∗∗ −0.011∗∗ −0.001 −0.003 0.30∗∗∗ −0.006 0.004 0.006
∆rt−6 ∗ 4Q BHC Loan Growtht−7 −0.014∗∗∗ 0.008∗ 0.015∗∗∗ −0.012∗∗ −0.002 −0.006 0.31∗∗∗ −0.005 −0.003
∆rt−7 ∗ 4Q BHC Loan Growtht−8 0.011∗∗ −0.009∗∗ 0.008∗∗ 0.016∗∗∗ −0.007 −0.001 −0.004 0.31∗∗∗ −0.001
∆rt−8 ∗ 4Q BHC Loan Growtht−9 0.000 0.012∗∗∗ −0.010∗∗∗ 0.006 0.018∗∗∗ −0.006 −0.004 −0.002 0.33∗∗∗
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sum: ∆r * 4Q BHC Loan Growth .27*** .28*** .27*** .29*** .31*** .3*** .33*** .35*** .36***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 80,934 80,934 80,934 80,934 80,934 80,934 80,934 80,934 80,934
Notes: First-stage estimates of equation (14). The dependent variable is the Romer-Romer shock interacted with 4Q loan growth. The IV is the
Romer-Romer shock interacted with 4Q loan growth at spatially separate banks of the same BHC. Lags refer to the lag of the dependent variable.
Additional controls are bank leverage. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.1 First stage In table 6 we report the first stage estimates of equation (14), focussing on

the coefficients on the instrument. The coefficient on the lag of BHC loan growth interacted

with the Romer-shock corresponding to the same lag of the dependent variable ranges from

0.25 to 0.33 at lags 0 through 8 and is highly statistically significant. All other instrument

coefficients are at least an order of magnitude smaller and often statistically insignificant.

This pattern likely reflects the lack of serial correlation of the monetary policy shocks.

The bottom part of the table reports the sum of the first-stage coefficients on the instru-

ments, which ranges from 0.27 to 0.36. The F-test that the sum of coefficients equals zero

is strongly rejected at the 0.1% level. Of course, a weak instrument test has to jointly test

these restrictions across all equations, which we report along with our main results.

4.2 Main Results Table 7 presents our baseline IV estimates. The dependent variable is

total loan growth of bank i at time t. For ease of exposition we only list the coefficients on

the interaction of the Romer-shock with the loan growth variable, {βk}8
k=0. This quantity the

cumulative effect of financial dampening on the bank lending channel. While the calculation

ignores potential dynamic feed-back through lags of ∆ lnLi,h,t, in practice such effects are

negligible. We report the sum of coefficients of this and other interactions at the bottom of

the table together with the p-value of a χ2-test that the sum is zero. All standard errors are

robust and clustered at the bank level.

The first column presents IV estimates based on equation (14) controlling only for bank-

level leverage. As predicted by the model, the individual coefficients on the interaction of

monetary shocks with loan growth are consistently negative and highly significant. The sum

of the coefficients is -23.1 and significant at the 0.1% level. The economic magnitude of

this coefficient is large. It implies that a bank at the 25th percentile of the loan growth

distribution will expand its loan portfolio by 3.25 percentage points less relative to a bank at

the 75th percentile following one percentage point reduction in monetary policy rates. Thus,

loan supply at retrenching bank is less sensitive to monetary policy shocks as implied by our
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Table 7 – IV estimates for Loan Growth
Dependent variable: 1Q Loan Growth

Baseline
Capital
(Book)
Controls

Capital &
Portfolio
Controls

Capital &
Perfor-
mance
Controls

(1) (2) (3) (4)
∆rt ∗ 4Q Loan Growtht−1 −0.96 −0.71 −1.53 −1.02
∆rt−1 ∗ 4Q Loan Growtht−2 −3.00 −4.01 −3.25 −2.09
∆rt−2 ∗ 4Q Loan Growtht−3 0.45 −0.73 0.024 −1.78
∆rt−3 ∗ 4Q Loan Growtht−4 −3.63 −4.70 −5.18 −3.46
∆rt−4 ∗ 4Q Loan Growtht−5 −3.89 −3.80 −3.31 −2.74
∆rt−5 ∗ 4Q Loan Growtht−6 −5.51∗∗ −6.52∗∗ −6.40∗∗ −8.98∗∗∗
∆rt−6 ∗ 4Q Loan Growtht−7 −3.76 −5.14∗ −6.20∗ −4.81
∆rt−7 ∗ 4Q Loan Growtht−8 2.22 1.56 2.84 2.56
∆rt−8 ∗ 4Q Loan Growtht−9 −4.96∗∗ −6.17∗∗ −6.94∗∗ −7.25∗∗
Time FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Sum: ∆r * 4Q Loan Growth -23.05*** -30.21*** -29.96*** -29.59***
p-value (0.001) (0.001) (0.001) (0.003)
Sum: ∆r * Leverage 2.08* 2.25** 2.74** 2.15*
p-value (0.054) (0.048) (0.018) (0.079)
Sum: ∆r * 4Q Capital Growth 9.87** 10.28** 11.43**
p-value (0.038) (0.034) (0.025)
Sum: ∆r * Size 6.53 3.96 2.87
p-value (0.288) (0.533) (0.662)
Sum: ∆r * LTA -4.5***
p-value (0.006)
Sum: ∆r * CTA 2.78
p-value (0.678)
Sum: ∆r * 4Q Allowance Change -65.82
p-value (0.568)
Sum: ∆r * 4Q Charge-off Change 25.87
p-value (0.754)
F-statistic 39.44 29.99 31.37 30.19
R2 0.07 0.07 0.07 0.08
Observations 80,934 80,032 79,620 76,692
Notes: IV estimates of equation (14). The IV is the Romer-Romer shock interacted with 4Q loan growth at
spatially separate banks of the same BHC. Additional controls are bank leverage, the banks median share in
total assets (size), book capital growth from bank regulatory data, the median loan-to-asset ratio (LTA), the
median cash-to-asset ratio (CTA), changes in the loan-loss allowance to loan ratio and changes in the charge-
off to loan ratio. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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theory. The F-statistic is 39.44, which suggests that we do not suffer from a weak instrument

problem.14

The economic magnitude of the financial dampening channel is comparable to other

effects that have been highlighted in the existing literature. For instance, Kashyap and Stein

(1995) show that loan growth at small banks rises by 0.3% more following a 1% reduction in

interest rates than loan growth at large banks (their figure 2). In Kashyap and Stein (2000)

the differential liquidity between the 10th and 90th generates a 0.8− 5.3% difference in loan

growth after two years to the same monetary policy shock. Landier et al. (2015) show that

the income gap difference between 25th and 75th percentile cause a 1.6% difference in loan

growth after 4 quarters.

In the second column we add interactions of book capital growth and bank size with the

monetary policy shock. As our measure of bank size we use a bank’s median asset share

over its lifetime. Controlling for book capital serves two purposes. First, in our baseline

model we disallowed direct equity issuance by the bank (only internal capital markets where

available), so holding equity fixed more closely approximates the model on that dimension.

Second, it ensures that our estimates are not driven by unprofitable, weak banks that shrink

their balance sheet because their capital is declining. We find that while these controls are

significant, they only raise our coefficient of interest. This effect is largely driven by the

capital growth control. It suggests that retrenching banks accumulate more capital to limit

the decline in loan growth. By holding capital growth fixed we hold this mitigating factor

fixed, which increases the estimated impact of financial dampening.

Another concern is that differential responses across banks are driven by differences in

portfolio risks across banks. For example, the balance sheet of banks with a higher loan-

to-asset ratio is likely more sensitive to monetary policy shocks, which may induce more

14The Stock and Yogo (2005) critical value for one endogenous variable and nine instruments is 36.19 and
for two endogenous variables and nine instrument it is 27.51. The monotonicity implies that we clear the
threshold for our just-identified setting with nine endogenous variables. Angrist and Pischke (2009) further
argue that weak identification problems in just-identified IV manifest themselves in wide standard errors in
the second stage but our second-stage coefficient are fairly precisely estimated.
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volatile loan supply at these banks. In column 3 we add controls for the loan-to-asset and

cash-to-asset ratio measured as averages over a banks lifetime. These controls also do not

change our coefficient of interest, but we do find a greater sensitivity of loan quantities at

banks with higher loan-to-asset ratios.

An alternative way to ensure that our results are not driven by potentially time-varying

differences in bank profitability or portfolio selection is to control for loan charge-offs or loan-

loss allowances, which capture the amount of non-performing loans at banks. In column 4,

we use changes in the charge-off to loan ratio and the loan-loss allowance to loan ratio to

again ensure that our estimates are again not driven by weak banks. As in the other columns,

we still find consistent evidence for financial dampening.

We next explore on what other dimensions retrenching banks differentially adjust their

balance sheets in response to monetary policy shocks. For brevity we only report the sum

of coefficients on loan growth interacted with the Romer-Romer shock, their p-value and (if

applicable) the first-stage F-statistic. First, in table 8 we use total asset growth of bank i at

time t as our dependent variable. The retrenchment effects are also present for asset growth.

The sum of coefficients on the loan growth interaction range from -8 to -12, but they are at

best borderline significant. Nevertheless, the economic magnitudes are large: according to

column 1 a banks who’s loan growth has been 10 percentage points slower will expand their

asset growth by 0.88 percentage points less than the average bank following a 1 percentage

point monetary policy rate reduction. Because the estimate is smaller than that for loan

growth, it implies that a retrenching bank tilts its portfolio away from loans towards other

assets compared to a bank that does not retrench. This suggests that retrenching banks

adjust the portfolio composition of their assets to reduce riskiness as well as the overall size

of their balance sheets. This is consistent with our theory.

While our model does not make a direct prediction about the change in leverage, this

outcome is also of interest since deleveraging has accompanied historical episodes of financial

retrenchment and, in particular, financial crises (Reinhart and Rogoff, 2014; Schularick and
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Table 8 – Other Outcome Variables

Baseline Capital
Controls

Capital &
Portfolio
Controls

Capital &
Performance
Controls

Dependent variable: Asset Growth
Sum: ∆r * 4Q Loan Growth -8.779 -9.96 -10 -12.12
p-value (0.144) (0.192) (0.205) (0.153)
F-statistic 40.59 27.95 33.14 35.89

Dependent variable: Leverage Growth
Sum: ∆r * 4Q Loan Growth -15.97* -21.45* -23.33** -24.92**
p-value (0.068) (0.056) (0.047) (0.044)
F-statistic 40.56 27.87 33.07 35.88

Dependent variable: Loans and Unused Commitments Growth
Sum: ∆r * 4Q Loan Growth -22.62*** -30.38*** -30.78*** -29.55***
p-value (0.001) (0.001) (0.001) (0.004)
F-statistic 37.39 28.07 30.28 31.01

Dependent variable: Real Estate Loan Growth
Sum: ∆r * 4Q Loan Growth -17.14** -24.56** -23.76** -28.66**
p-value (0.041) (0.028) (0.039) (0.02)
F-statistic 39.66 34.53 31.90 34.37

Dependent variable: C&I Loan Growth
Sum: ∆r * 4Q Loan Growth -6.8 -13.09 -12.1 -17.13
p-value (0.726) (0.624) (0.653) (0.553)
F-statistic 38.73 28.71 29.29 28.65
Notes: Alternative dependent variables in equation (14). Baseline and control specifications are as in table
7. In each case we include eight lags of four-quarter growth of the new outcome variable as a control. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Taylor, 2012). We therefore estimate equation (14) using leverage growth as dependent

variable and tabulate the estimates in table 8. The estimate in column 1 implies that a

1.60 percentage point reduction in leverage for a bank with 10 percentage point slower loan

growth following a one percentage point monetary policy rate reduction. This is consistent

with essentially all the reduction in asset growth being used to reduce leverage, as implied

by our baseline model. Adding controls in columns 2 through 4 increases this estimate to

the point where it is also statistically significant at conventional levels.

Finally, we examine the margins of adjustments within the loan portfolio. We do find

that including unused commitments in our measure of loans has very little impact on our

estimates of loan retrenchment (table 8). This suggests that banks are also shrinking off-

balance-sheet items, rather than merely shifting loans off of the balance sheet. We also find a

significant decline in real estate loans, which include both commercial and residential loans.

However, our estimates for C&I loans are very noisy, so it is difficult to say whether financial

dampening disproportionally affects one type of loan relative to another. Unfortunately,

limited call report data prevent us from studying further disaggregated categories.

5 Validating the Identification Strategy

In tables 9 and 10 we document additional results for loan growth to validate our iden-

tification strategy and further illustrate the robustness of our results.

5.1 Spatial correlation of demand We first focus on the concern that loan demand

shocks may be spatially correlated at BHC-member banks. This would violate the exclusion

restriction since a common loan demand shock would determine both local and BHC-level

loan quantities.

We perform three exercises to show that this concern does not drive our results. We first

construct local loan growth excluding the current bank to capture common unobserved local

demand shocks. We sum up all assets at banks in location l of bank i but not including
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bank i. When there are no such banks we move up to the next geographical level until this

set is non-empty. If all banks at the same location are similarly affected by local demand

conditions, then this strategy would help us control for local demand. We interact this local

loan growth variable with the monetary policy shock and include it in the regression. This

has little effect on the strength of financial dampening.

An alternative approach, we follow Beraja, Fuster, Hurst and Vavra (2018) who show

significant effects of local house price growth on the demand for refinancing and mortgage

lending. We therefore interact MSA-level house price indexes from the Federal Housing

Finance Agency (FHFA) with our monetary policy shock and include this variable as a

control. Using the FHFA data considerable reduces the sample size of our data, since many

MSAs were not covered before the early 1990s. This reduction in sample size substantially

reduces our first stage F-statistics. However, our financial dampening effects in table 9 are

still relatively precisely estimated and the magnitudes become even stronger, which provides

additional support that our baseline results are supply-driven rather than demand-driven.

Second, if there is a dominant bank in the BHC, then a local demand shock may affect

portfolio decisions by other banks, so the instrument for the dominant bank will be invalid.

In our baseline sample the median loan share in the BHC is 10.3%, but some banks do have

a much larger loan share. We therefore exclude banks whose loan share in the BHC exceeds

20%. In this sub-sample the median loan share is 4.6% and our estimated coefficients are

slightly larger, suggesting that our instrumental variable strategy is not confounded by banks

with large BHC loan shares.

Third, we drop banks in the construction of the instrument that are near the local bank

and thus more likely to be subject to the same loan demand shock. We first exclude all

banks from the instrument that are located in the same local labor market, defined as the

largest of the County/mSA/MSA/CSA that the local bank is part of. This removes 8% of

banks from our baseline sample and should eliminate any correlation from common shocks

within these local labor markets from our instrument. However, if anything we estimate
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larger effects from financial dampening.

A more aggressive strategy is to repeat this exercise defining the local labor market

using state-delineations. This removes 51% of all banks from our baseline sample, which is

reflected in our lower F-statistics. But even so, we still find statistically significant effects

from financial dampening in this specification. These results suggest that our results are not

driven by spatially correlated demand shocks.

5.2 Portfolio selection effects Next we focus on the concern that specialization by the

BHC creates generates correlated demand shocks among BHC-member banks. We have

already included several portfolio controls that will account for some of these choices. Here

we further extend this analysis.

First, we directly control for the possibility that BHCs select into location with particular

industry compositions. For example, the construction sector may be disproportionally af-

fected by a national demand shock, so that BHCs operating in areas with a high employment

share in construction are particularly affected by loan demand constraints. To address this

issue, we also separately interact the local employment shares of mining, manufacturing and

construction with the monetary policy shock and include them as controls. These controls

therefore capture the possibility that some areas’ loan demand is more sensitive to monetary

policy because of its industry composition. As can be seen in table 9, our results with these

additional controls are very similar to our baseline.

Second, after 1994 we also have data on the small business loan exposure of banks. For

each bank we calculate the median value share of business and industrial loans secured by real

estate that had an origination value of less and $100,000 and less then $1,000,000. We then

interact both shares with the monetary policy shock and add this controls to our estimation.

The coefficients in table 10 remain very similar our baseline estimates and particularly to

the post-1994 results shown later, again showing that the financial dampening channel we

identify is not an artifact of bank portfolio specialization.

Importantly we only control for bank-level portfolio choices not BHC-level portfolio
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choices (excluding the current bank), because only the former create a threat to our identifi-

cation. For example, suppose some BHCs specialize in small business loans. If loan demand

at small businesses is more sensitive to monetary policy shocks, then all BHC-member banks

may see lower loan demand, even if they operate in distinct locations. However, to address

this concern, it is sufficient to include only controls for local bank portfolios. Consider the

case of two local banks one specializing in small business loans and the other not specializing.

By controlling for the banks’ small business loan exposure, we purge differences in (local)

bank loan demand stemming from such specialization. Conditional on these controls, any

differential exposure to small business loans at the corresponding BHCs could only affect

local loan quantities through the BHC internal capital market. Since this variation is exoge-

nous to “purged” local loan demand, our IV-strategy remains valid subject to only including

bank-level portfolio controls. As we have just shown, these controls, if anything, strengthen

our results.

5.3 Regulatory capital requirements In table 10 we next examine whether our estimates

could be driven by regulatory limits. For example, the regulator may force banks to shed

loans and simultaneously limit new loan creation. Retrenching banks could be close to

regulatory capital requirements and thus less able to issue more loans following a reduction in

monetary policy rates. Examining this hypothesis is somewhat limited by data availability.

From the call reports we can construct the risk-adjusted capital ratio (Tier1 plus Tier 2

capital divided by risk-adjusted assets) only from 1996 onwards. The call data from 1990 to

2001 also contains a regulatory indicator (RCFD6056) if total capital exceeds 8% of adjusted

total assets. We therefore splice the data as follows: we use the regulatory indicator whenever

available. When it is not available, we set it to 0 if the risk-adjusted capital ratio is below

12.5%. For the overlap period, this threshold corresponds to the 80th percentile of the risk-

adjusted capital ratio when the regulatory indicator is 0 and the 21st percentile when the

regulatory indicator is 1. We then exclude banks from the sample whenever the regulatory

indicator is zero. For this sub-sample we find, if anything, stronger effects from financial
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Table 9 – Identification Validation and Robustness Exercises

Baseline Capital
Controls

Capital &
Portfolio
Controls

Capital &
Performance
Controls

Baseline estimates
Sum: ∆r * 4Q Loan Growth -23.05*** -30.21*** -29.96*** -29.59***
p-value (0.001) (0.001) (0.001) (0.003)
F-statistic 39.44 29.99 31.37 30.19

Controlling for local loan growth
Sum: ∆r * 4Q Loan Growth -21.41*** -28.35*** -28.73*** -26.95**
p-value (0.006) (0.004) (0.004) (0.014)
F-statistic 29.05 26.80 24.97 27.53

Controlling for local house price growth
Sum: ∆r * 4Q Loan Growth -32.53*** -37.33*** -36.81** -30.3**
p-value (0.003) (0.005) (0.01) (0.034)
F-statistic 15.79 13.88 13.51 11.64

Excluding banks with 20% or higher share of total BHC loans
Sum: ∆r * 4Q Loan Growth -28.04*** -35.63*** -37.43*** -29.89**
p-value (0.002) (0.002) (0.002) (0.021)
F-statistic 22.14 18.09 17.23 17.07

Excluding banks in same mSA/MSA/CSA from instrument
Sum: ∆r * 4Q Loan Growth -29.43*** -39.95*** -40.31*** -40.87***
p-value (0.000) (0.000) (0.000) (0.001)
F-statistic 33.47 24.21 24.32 20.97

Excluding banks in same State from instrument
Sum: ∆r * 4Q Loan Growth -59.45*** -83.79*** -85.51*** -86.04**
p-value (0.003) (0.005) (0.007) (0.013)
F-statistic 6.65 4.12 3.69 3.23

Controlling for local employment composition
Sum: ∆r * 4Q Loan Growth -22.76*** -28.86*** -28.59*** -28.17***
p-value (0.001) (0.001) (0.002) (0.005)
F-statistic 35.34 28.72 29.97 28.56

Notes: Robustness checks of equation (14). Baseline and control specifications are as in table 7. “Controlling
for local loan growth” adds a control for loan growth at the banks’ location excluding the current bank
interacted with the monetary policy shock. “Controlling for local house price growth” adds a control for
house price growth for the MSA in which the bank is located. “Excluding banks with 20% or higher share of
total BHC loans” excludes banks whose share of loans in the BHC exceeds 20%. “Excluding banks in same
mSA/MSA/CSA from BHC-instrument” defines a bank’s location as the largest of County/mSA/MSA/CSA
and thus excludes any other bank in that location from the instrument. “Excluding banks in same State
from BHC-instrument” defines a bank’s location as its state (subject to the 95% rule) and thus excludes
any other bank in the same state from the instrument. “Controlling for local employment composition” adds
the employment share of construction, manufacturing, and mining each interacted with the monetary policy
shock. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10 – Identification Validation and Robustness Exercises (continued)

Baseline Capital
Controls

Capital &
Portfolio
Controls

Capital &
Performance
Controls

Controlling for share of small business loan (starting in 1994)
Sum: ∆r * 4Q Loan Growth -17.79** -24.17** -23.76* -26.21**
p-value (0.044) (0.042) (0.05) (0.04)
F-statistic 20.45 20.22 19.54 18.55

Excluding banks near regulatory threshold
Sum: ∆r * 4Q Loan Growth -28.59*** -31.95*** -33.16*** -29.63**
p-value (0.004) (0.004) (0.005) (0.021)
F-statistic 19.33 24.52 26.32 28.54

Excluding BHCs with > 20% of loans at banks near regulatory threshold
Sum: ∆r * 4Q Loan Growth -36.61*** -38.71*** -39.44*** -36.61***
p-value (0.002) (0.002) (0.002) (0.009)
F-statistic 27.41 29.00 27.61 28.07

Leverage categories (20, 40, 60, 80, 98, 99.5 percentiles)
Sum: ∆r * 4Q Loan Growth -24.62*** -31.95*** -31.8*** -31.01***
p-value (0.000) (0.000) (0.000) (0.001)
F-statistic 42.38 32.90 34.04 33.67

Using 100% deposit share to assign location and 0% in major-presence test
Sum: ∆r * 4Q Loan Growth -29.23*** -36.89*** -36.41*** -36.19***
p-value (0.000) (0.000) (0.000) (0.001)
F-statistic 25.57 19.97 31.43 25.62

Starting sample in 1994
Sum: ∆r * 4Q Loan Growth -19.51** -26.47** -25.98** -29.42**
p-value (0.021) (0.021) (0.029) (0.019)
F-statistic 21.50 22.04 21.16 19.73

OLS Estimates (same sample)
Sum: ∆r * 4Q Loan Growth -7.82*** -7.59*** -7.19*** -3.27
p-value (0.000) (0.002) (0.005) (0.192)
Notes: Robustness checks of equation (14). Baseline and control specifications are as in table 7. “Controlling
for share of small business loan” interacts the shares of small business loans (< 100, 000 and < 1, 000, 000)
secured by real estate with the monetary policy shock. “Excluding banks near regulatory threshold” excludes
banks for which the regulatory indicator (RCFD6056) is zero or (if unavailable) the risk-adjusted capital ratio
is below 12.5%. “Excluding BHCs with > 20% of loans at banks near regulatory threshold” excludes banks
whose BHC-loan-weighted average of the regulatory indicator exceeds 0.2. “Leverage categories” replaces
the linear leverage control with leverage categories with cut-offs at the 20, 40, 60, 80, 98 and 99.5 percentiles.
“Using 100% deposit share to assign location and 0% in major-presence test” only assigns banks to locations
if all their deposits are located their (rather than 95% in the baseline), and replaces the 5% threshold of the
major-presence test (13) with a 0% threshold. “Starting sample in 1994” starts the estimation in 1994 when
the FDIC Summary of Deposits is first available. “OLS estimates” report OLS estimates of equation (14).
Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.0134



dampening.

We then check if this mechanism could apply at the BHC level. For example, the regulator

may force all BHC member banks to shed loans and limit new loan creation. To capture

this possibility, we measure what fraction of BHC loans are at banks close to the regulatory

limit by weighting the bank regulatory indicator with the bank’s loan share in the BHC.

We then exclude all banks/BHCs from the sample for which more than 20% of loans are at

BHC-member banks close to regulatory limits. Again, our estimates increase slightly. This

suggests, that we do not conflate financial dampening with regulatory policies.

A particular model of how banks respond to regulatory minimums is Van den Heuvel

(2005), which predicts that bank lending exhibits non-monotonic behavior in leverage. We

therefore replace our linear leverage control with categorical variables. We use leverage

quintiles supplemented with separate categories for the top 2% and top 0.5% of bank leverage.

We find that banks with relatively low leverage (below the 98th percentile) have the strongest

response; banks with high leverage (between the 99.5th and 98th percentile) have the weakest

response; and banks with very high leverage (top 0.5th percentile) have an intermediate

response to monetary policy. This pattern is consistent with Van den Heuvel’s implication

that high-leverage financial intermediaries may retrench and very-high-leverage banks may

gamble for resurrection. However, this mechanism is distinct from financial dampening as

adding these controls does not affect our main estimates.

5.4 Sample construction robustness Finally, we perform robustness checks on our sam-

ple construction. First, we use a more stringent location assignment, that matches banks

only to locations with 100% of their total deposits rather than 95% in the baseline. Further,

in the construction of our instrument we only include banks that have no deposits in the

current location rather than less than 5% (equation (13)). Our results are not sensitive to

this choice.

Second, in the construction of bank locations we only have FDIC deposit data from 1994

onwards, and we assume that a bank’s location in 1994 is also its location before 1994. We

35



think this is a sensible assumption since location concentration was likely decreasing over

time, but in table 10 we also present results using sample after 1994. These estimates are

very similar to the whole sample, although our F-statistics are somewhat smaller than in our

baseline. Thus, this assumption is not driving our results. Further, the regulatory regime

has changed considerably over the 1980s, with, for instance, the abolition of Regulation Q

and relaxation on interstate banking restrictions (Goetz et al., 2013; Van den Heuvel, 2012).

That our estimates are essentially unchanged after 1994 is further evidence that financial

dampening is present across regulatory regimes.

Third, we tabulate the baseline estimates and in the second the OLS estimates for the

same sample of banks. These are approximately one-half to one-quarter of the IV estimates,

although still highly significant. This suggests, that if our instruments are weak in some

specification, they are biased towards the OLS estimates and will underestimate the effect

of financial dampening.

Interestingly, the OLS estimates for the full sample of banks, including national banks

not assigned to a location, are quite similar to the OLS estimates for the sub-sample (not

shown). Indeed, they are stable even when we only include banks whose balance sheet

exceeds ten billion 2005 dollars. This is at least suggestive evidence that loan retrenchment

is also important in the full sample, and that our IV estimates generalize beyond the sample

of banks where we can implement the estimation strategy.

In short, we provide a battery of checks to validate the exclusion restriction, and show

that the financial dampening channel is a quantitatively robust feature of bank responses to

monetary policy shocks.

6 Local outcomes

We next determine if other commercial banks in a location offset the financial dampening

effect at retrenching banks. This is likely a necessary condition for financial dampening to
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have real effects.15

We first collapse the balance sheet information to the county level. For banks that operate

in multiple counties, we apportion the balance sheet using the fraction of the banks’ deposits

located in the county in the previous year. The implicit assumption is that a bank’s loan

growth within a year is the same in each county l it operates, ∆ lnLilt = ∆ lnLit. For the

following year the county-weights adjust based on local deposit changes and we assume that

these capture changes in local loan growth. If these assumptions are incorrect, then our

outcome variable will be more noisy, but it should not bias our coefficients of interest.

We weight each bank in a county by its local deposit share in the previous year, s̃il,t−1 =

dil,t−1

dl,t−1
. We then construct two measures of loan growth. The first only includes banks

in our baseline sample (“in-sample”), which are banks assigned to a location for which we

can construct the elsewhere loan growth instrument. The second measure (“all”) are all

commercial banks with a presence in location l,

∆ lnLtype
lt =

∑
i∈type s̃il,t−1∆ lnLit∑

i∈type s̃il,t−1

, type ∈ {in-sample, all}

The “in-sample” banks account, on average, for 30.9% of county-level deposits. The banks

in the “all” loan growth measure, on average account for 80.4% of local deposits. Thrifts

account for the remaining share.

We repeat the same calculations to obtain two measures of local loan growth, ∆ lnLtype
lt ,

and elsewhere loan growth ∆ lnLtype
−l,t . With these data we estimate our baseline specification

(14) at the county level.

The first column of table 11 is a regression analogous to the results in table 7, except

that all variables are measured at the county level rather than at the bank level. We have

the same outcome variable, ∆ lnLin-sample
lt , the same IV strategy, and the same sample of

banks.16 One difference is that the county-level regression weighs banks based on their local

15Our data do not allow us to check to what extent such loan substitutions carry the same interest rate.
16As in our baseline regressions, we trim the top 0.5% and bottom 0.5% of the balance sheet variables.

For employment growth, which is less noisy, we trim the top and bottom 0.01%.
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importance. Nevertheless, the estimates in column (1) of table 11 are quite close to our

bank-level results.

In column (2) of table 11 the outcome variable is loan growth at all commercial banks,

∆ lnLall
lt . This regression captures if other banks compensate for the relative reduction in

local loan growth due to financial dampening at the in-sample banks. The total effect in

column (2) is of similar size as in column (1), suggesting that there is little substitution to

other banks and that financial dampening does affect local loan growth.

To determine whether financial dampening also affects real economic outcomes at the

county level, in column (3) we use county employment growth as an outcome variable. The

regression equations are otherwise identical to columns (1) and (2). We weight observations

by the deposit share of in-sample banks to capture how important our retrenching variable

is for the county.17 We find that the effect of financial dampening on local employment is

sizable, persistent and statistically significant.

Figure 1 plots the implied lower employment growth in a county at the 25th percentile

of the loan growth distribution compared to a county at the 50th percentile following a -

1% monetary policy shock, along with the 95% confidence interval. The differential effect

amounts to an annualized 0.52 percentage points weaker employment growth over two years.

To put our quantitative results in perspective, for the U.S. economy as a whole, a -1%

monetary policy shock leads to a peak increase in employment of 1% after 29 months.18 If

the aggregate effect applies at the median county, then the peak response is only −0.48%

at the 25th percentile of the county loan growth distribution. Thus the stimulative effect of

monetary policy is almost cut in half in counties with moderate loan retrenchment. This

relative slowdown in employment growth suggests that financial dampening could be an

17Alternatively, we could regress local employment growth on local loan growth instrumenting with else-
where loan growth and elsewhere loan growth interacted with the monetary policy shock. Results are
qualitatively similar in that case. A disadvantage of this second specification is that we cannot directly test
for the dampening effect since we cannot separate the effect of elsewhere loan growth from its interaction
with the monetary policy shock.

18This statement is based on regressing aggregate employment growth on the monetary policy shock,
∆ ln et = α+

∑36
j=0 βjrt−j + εt and reporting the peak impact at 29 months,

∑29
j=0 βj .
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Table 11 – IV estimates at County level
Dependent
variable: 1Q Loan Growth 1Q Employment

Growth

Banks in-sample All banks Local
employment

(1) (2) (3)
∆rt−0 ∗ 4Q Loan Growtht−1 0.20 2.87 −3.22
∆rt−1 ∗ 4Q Loan Growtht−2 −3.95 −3.38∗∗ −0.33
∆rt−2 ∗ 4Q Loan Growtht−3 −2.63 −2.00 −3.36∗
∆rt−3 ∗ 4Q Loan Growtht−4 1.39 −0.96 3.13
∆rt−4 ∗ 4Q Loan Growtht−5 −0.63 −1.17 −6.15∗∗∗
∆rt−5 ∗ 4Q Loan Growtht−6 2.34 1.07 1.62
∆rt−6 ∗ 4Q Loan Growtht−7 −5.87∗∗∗ −3.89∗∗∗ −2.34
∆rt−7 ∗ 4Q Loan Growtht−8 4.27∗ 2.85∗ 3.16
∆rt−8 ∗ 4Q Loan Growtht−9 −11.6∗∗∗ −6.95∗∗∗ −1.25
Time FE Yes Yes Yes
County FE Yes Yes Yes
Sum: ∆r * 4Q Loan Growth −16.46∗∗∗ −11.57∗∗∗ −8.74∗
p-value (0.009) (0.005) (0.078)
Sum: ∆r * Leverage 0.31 −.01 1.91∗∗
p-value (0.776) (0.994) (0.039)
F-statistic 42.80 43.81 35.64
R2 0.06 0.15 0.11
Observations 96.535 96.535 96.332
Notes: IV estimates of equation (14) at the County level. The dependent variable is in the table header.
In-sample banks are banks for which we can construct the instrument based on BHC-member banks located
elsewhere. All banks are all commercial banks in the bank regulatory data. The employment regressions
are weighted by the County deposit-share of in-sample banks. The IV is the Romer-Romer shock interacted
with 4Q loan growth in matched banks operating elsewhere. Standard errors are clustered at the County
level. Additional controls are 8 lags of the dependent variable and 8 lags of leverage and its interaction with
the Romer-Romer shock.
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important contributor to slow recoveries from recessions featuring loan retrenchment by the

financial sector.
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Differential Employment Effect: 6% Loan Retrenchment

Figure 1 – Differential employment growth following a -1% monetary policy shock in a county at
the 25th percentile of the loan growth distribution compared to a county at the 50th percentile.
Dashed lines represent the 95% confidence interval.

7 Conclusion

We document new evidence suggesting that loan retrenchment by banks attenuates the

effectiveness of monetary policy, a mechanism we call financial dampening. We derive condi-

tions under which financial dampening arises in a model of BHC member banks that share an

internal capital market. The key ingredients are the usage of capital as cushion against non-

tradable loan risks and loan liquidation costs. Our theory implies that retrenching banks,

which face higher marginal liquidation costs, will expand loan supply less in response to a

reduction in monetary policy rates compared to banks that do not retrench.

We test our baseline theory with micro-data on financial intermediation and Romer and

Romer (2004) monetary policy shocks. A key obstacle is to separate the loan supply effects

from loan demand. We derive an IV-strategy from our model, which exploits exploit the

spatial concentration of U.S. banks and linkages across banks through common BHC-internal
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capital markets. We instrument loan retrenchment at a bank with average retrenchment at

banks belonging to the same controlling BHC, but operating in a separate geographical area.

We find that this instrument has significant predictive power. Our estimates imply that in

response to a 1% monetary policy shock, a bank at the 25th percentile of the retrenchment

distribution increases its loan growth by 3.25 percentage points more than a bank at the 75th

percentile. We provide a battery of robustness checks to validate our identification strategy

and demonstrate the quantitative importance of financial dampening at the bank level.

At the county level we do not find evidence that the financial dampening effect on loan

supply is offset by other banks. Instead, we estimate that counties with lower loan growth

from financial dampening have persistently lower employment growth. This evidence pro-

vides a microfounded and empirically supported rationale for why recoveries from financial

sector retrenchment, such as deep financial crises, may be slow.

Our results also suggest policy implications that we did not focus on in this paper. In

particular, monetary policy may want to cut monetary policy rates more aggressively in

recessions accompanied by financial sector retrenchment than in other recessions. Further-

more, if the zero-lower bound is a binding constraint on monetary policy, then our analysis

suggests how non-traditional monetary policy tools working through bank balance sheets

may support the traditional interest rate channel. On the asset side, direct purchases of

bank loans such as during the TARP program, will mitigate financial dampening by re-

ducing the loan liquidation costs ψ. On the liability side, capital subsidies can reduce risk

premia θh, lower bank risk aversion, and thereby reduce loan retrenchment. We leave a more

detailed study of these policy implications for future work.
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A Proofs

A.1 Proof of Proposition 1 For convenience, we restate the optimization problem of

period 1 here:

max
Li,h,Ki,h

E[V (wi,h, Ki,h)]

s.t. wi,h = (rL − rF )Li,h + (1 + rF )Ki,h −Ψ(∆Li,h/Li,h,0)Li,h,0

rL = r̄L + ε

ε ∼ N(0, σ2
ε)

V (wi,h, Ki,h) = P (wi,h)− (1 + rh)Ki,h

The first order condition with respect to BHC capital Ki,h is given by

E[P ′(wi,h)](1 + rF )− (1 + rh) = 0 (15)

The first order condition with respect Li,h is given by

E

[
P ′(wi,h)

(
rL − rF − ∂Ψ(∆Li,h/Li,h,0)

∂∆Li,h/Li,h,0

)]
= 0 (16)

Manipulating this first order condition (16)

∂E[P (wi,h)]

∂Li,h
= E

[
P ′(wi,h) ·

∂wi,h
∂Li,h

]
= E [P ′(wi,h)] · E

[
∂wi,h
∂Li,h

]
+ Cov

(
P ′(wi,h),

∂wi,h
∂Li,h

)
= E [P ′(wi,h)] · E

[
∂wi,h
∂Li,h

]
+ E[P ′′(wi,h)]Cov

(
wi,h,

∂wi,h
∂Li,h

)
= E [P ′(wi,h)] · E

[
rL − rF − ∂Ψ(∆Li,h/Li,h,0)

∂∆Li,h/Li,h,0

]
+ E[P ′′(wi,h)]Cov

(
wi,h, r

L − rF − ∂Ψ(∆Li,h/Li,h,0)

∂∆Li,h/Li,h,0

)
= E [P ′(wi,h)] ·

[
r̄L − rF − ∂Ψ(∆Li,h/Li,h,0)

∂∆Li,h/Li,h,0

]
+ E[P ′′(wi,h)]Li,hσ

2
ε

where from the second to the third line, we used the fact that Cov(f(x), y) = E[f ′(x)]Cov(x, y)
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for normally distributed random variables. Defining risk aversion as

Gh = −E[P ′′(wi,h)]

E[P ′(wi,h)]

=
g(1− A+ θh)

1 + θh

where the second line follows from the definition of P (w) in (3) and the first order condition

(15) and the definition of the BHC capital premium 1 + θh = 1+rh

1+rF
.

Therefore, the optimal loan supply is given by

LS∗i,h =
r̄L − rF − ∂Ψ(∆LS∗

i,h/Li,h,0)

∂(∆LS∗
i,h/Li,h,0)

Gh · σ2
ε

A.2 Proof of Proposition 2 We differentiate (4) with respect to rF to obtain:

∂ lnLS∗i,h
∂rF

= − 1− µ

r̄L − rF −Ψ′
(

∆LS∗
i,h

Li,h,0

) −
(

1 +
∆LS∗

i,h

Li,h,0

)
Ψ′′
(

∆LS∗
i,h

Li,h,0

)
r̄L − rF −Ψ′

(
∆LS∗

i,h

Li,h,0

) ∂ lnLS∗i,h
∂rF

= − 1− µ

r̄L − rF −Ψ′
(

∆LS∗
i,h

Li,h,0

)
+
(

1 +
∆LS∗

i,h

Li,h,0

)
Ψ′′
(

∆LS∗
i,h

Li,h,0

)
= − 1− µ

r̄L − rF + Ψ′′
(

∆LS∗
i,h

Li,h,0

)
where the last line uses that Ψ is a quadratic function, so xΨ′′(x) = Ψ′(x).

We then substitute LSi,h = LS∗i,h + εLi,h,0,

∂ lnLSi,h
∂rF

LSi,h
LSi,h − εLi,h,0

= − 1− µ

r̄L − rF + Ψ′′
(

∆LS
i,h

Li,h,0
− ε
)

and take expectations over the measurement error ε conditional on ∆LSi,h/Li,h,0,

∂ lnLSi,h
∂rF

Eε

[
r̄L − rF + Ψ′′

(
∆LSi,h
Li,h,0

− ε

)∣∣∣∣∣ ∆LSi,h
Li,h,0

]
= Eε

[
−(1− µ)(LSi,h − εLi,h,0)

LSi,h

∣∣∣∣∣ ∆LSi,h
Li,h,0

]

⇒
∂ lnLSi,h
∂rF

= − 1− µ

r̄L − rF + Φ′′
(

∆LS
i,h

Li,h,0

)
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We then approximate around Li,h = Li,h,0:

∂ lnLSi,h
∂rF

≈ − 1− µ
r̄L − rF + Φ′′(0)

+
(1− µ)Φ′′′(0)

[r̄L − rF + Φ′′(0)]2
ln

(
LSi,h
Li,h,0

)

Our micro-foundation for the asymmetric adjustment costs (appendix B) imply Φ′(0) < 0,

Φ′′(0) > 0, Φ′′′(0) < 0, so that the loan supply response is given by

∂ lnLSi,h
∂rF

≈ − 1− µ
r̄L − rF + Φ′′(0)

+
(1− µ)Φ′′′(0)

[r̄L − rF + Φ′′(0)]2
ln

(
LSi,h
Li,h,0

)
(17)

A.3 Proof of Proposition 3 For convenience, we restate our core estimating equation

again:

∂ lnLi,h
∂rF

= α + β∆ lnLi,h + ui,h

α = − 1− µ
r̄L − rF + Φ′′(0)

β =
(1− µ)Φ′′′(0)

[r̄L − rF − Φ′(0) + Φ′′(0)]2

ui,h = xi,h (−α− β ×∆ lnLi,h)

The instrumental variables estimator is defined as

β̂IV =
Cov

(
∂ lnLi,h

∂rF
,∆ lnL−i,h

)
Cov (∆ lnLi,h,∆ lnL−i,h)

=
Cov (α + β ×∆ lnLi,h + ui,h,∆ lnL−i,h)

Cov (∆ lnLi,h,∆ lnL−i,h)

= β +
Cov (ui,h,∆ lnL−i,h)

Cov (∆ lnLi,h,∆ lnL−i,h)
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where the key term is

Cov (∆ lnL−i,h, ui,h)

= Cov
(

(1− x̄)∆ lnLSi,h + xj,h ·∆ lnLcj,h , xi ·
(
−α− β ·

[
∆ lnLSi,h + xi,h ·

(
∆ lnLci,h −∆ lnLSi,h

)]))
= Cov

(
(1− x̄)∆ lnLSi,h , xi,h ·

(
−α− β

[
∆ lnLSi,h + xi,h ·

(
∆ lnLci,h −∆ lnLSi,h

)]))
= −α(1− x̄)Cov

(
∆ lnLSi,h, xi,h

)︸ ︷︷ ︸
=0

−(1− x̄)β E[xi,h(1− xi,h)]︸ ︷︷ ︸
=0

V ar[∆ lnLSi,h]

− (1− x̄)β Cov
(
∆ lnLSi,h, x

2
i∆lnL

c
i,h

)︸ ︷︷ ︸
=0

= 0

where the second line uses that demand constraints are uncorrelated across banks in dif-

ferent locations and the third line uses the independence of xi,h from ∆ lnLSi,h (small bank

assumption).

B Expected liquidation costs

In the equation (4) the actual marginal adjustment costs are unobservable, because the

measurement error ε is unobserved by the econometrician. Thus, we can only capture the

average cost of liquidations for a given observed change in loan exposure. Assuming a uniform

distribution for ε, ε ∼ U [a, b], the average marginal liquidation cost for a bank is,

Φ′

(
∆LSi,h
Li,h,0

)
= Eε

 ∂Ψ

∂
∆LS∗

i,h

Li,h,0

(
∆LS∗i,h
Li,h,0

)∣∣∣∣∣ ∆LSi,h
Li,h,0


= Eε

[
ψ

(
∆LSi,h
Li,h,0

− ε

)
I

{
∆LSi,h
Li,h,0

− ε < 0

}]

= ψ
∆LSi,h
Li,h,0

Prε

(
∆LSi,h
Li,h,0

− ε < 0

)
− ψEε

[
εI

{
∆LSi,h
Li,h,0

< ε

}]

= ψ
∆LSi,h
Li,h,0

b− ∆LS
i,h

Li,h,0

b− a
− ψ

b2 −
(

∆LS
i,h

Li,h,0

)2

2(b− a)
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where I{•} is an indicator function and the last line assumes that observed loan growth

is within the bounds b > ∆Li,h

Li,h,0
> a. Crucial for our purposes, the adjustment costs are

asymmetric

Φ′
(

∆Li,h
Li,h,0

)
= −ψ

2

(
b− ∆Li,h

Li,h,0

)2

b− a
< 0

Φ′′
(

∆Li,h
Li,h,0

)
=
ψ(b− ∆Li,h

Li,h,0
)

b− a
> 0

Φ′′′
(

∆Li,h
Li,h,0

)
=
−ψ
b− a

< 0

Evaluated at zero:

Φ′ (0) = − ψb2

2(b− a)
< 0

Φ′′ (0) =
ψb

b− a
> 0

Φ′′′ (0) = − ψ

b− a
< 0

With a symmetry, a = −b, we have Φ′ (0) = −ψa
4
, Φ′′ (0) = ψ

2
, and Φ′′′ (0) = − ψ

2a
.
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